

GCSE Chemistry B (Twenty First Century Science)

J258/03 Breadth in chemistry (Higher Tier)

Question Set 17

l		elements would be discovered to fill these gaps.								
	(a)	Mendeleev left a gap below aluminium.								
		Later gallium was discovered and fitted this gap.								
		Give two reasons why gallium fitted this gap.	[2]							
	(b)	When Mendeleev made his Periodic Table he also put some elements 'out of order'.								
		Which later discovery proved that he was right to do this?								
		Tick (✓) one box.								
		More properties of the elements were discovered.								
		Atomic numbers were measured.								
		Most atoms contain neutrons.								
		More elements were discovered.								
			[1]							
	(c)	Gallium forms an oxide, Ga ₂ O ₃ .								
		Draw a 'dot and cross' diagram for the ions in Ga ₂ O ₃ .								
		Show outer electron shells only.								
			[3]							

Total Marks for Question Set 17: 6

Resource Materials

The Periodic Table of the Elements

(1)	(2)					_						(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	1 H rogen		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	18 2 He helium 4.0
3 Li lithium 6.9	4 Be beryllum 9.0											5 B boton 10.8	6 C cerbon 12.0	7 N nitrogen 14.0	8 O oxygen 16.0	9 F fluorine 19.0	10 Ne neon 20.2
11 Na sodium 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S sulfur 32.1	17 Cl chlorine 35.5	18 Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti ttanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe lion 55.8	27 Co cobet 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zino 65.4	31 Ga gallum 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y ythlum 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru rufterium 101.1	45 Rh modum 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn tin 118.7	51 Sb artimony 121.8	52 Te wturlum 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba berlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir idum 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrlum	108 Hs hassium	109 Mt metrerium	110 Ds darmetactium	111 Rg roentgenium	112 Cn copernicium		114 F <i>l</i> flerovium		116 Lv Ivermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge