

GCSE Chemistry B (Twenty First Century Science)

J258/03 Breadth in chemistry (Higher Tier)

Question Set 5

1 Ling carries out an investigation of the halogens.

(a) Ling reacts some chlorine solution with a solution of potassium bromide.

The solution turns brown.

Explain why.

Include an **ionic** equation in your answer.

[3]

(b) Ling sees that the element astatine, At, is below iodine in Group 7.

She makes some predictions about astatine.

Which predictions about astatine are correct?

Tick (\checkmark) **two** boxes.

Astatine is white.

Astatine is a gas.

Astatine reacts with sodium to form NaAt.

Astatine is less reactive than iodine.

[1]

Total Marks for Question Set 5: 4

Resource Materials

The Periodic Table of the Elements

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol relative atomic mass									13	14	15	16	17	18 2 He ^{helium} 4.0
3 Li ithium 6.9 11 Na sodium 23.0	4 Be 9.0 12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	5 B 10.8 13 Al atuminium 27.0	6 C carbon 12.0 14 Si silcon 28.1	7 N nitrogen 14.0 15 P phosphorus 31.0	8 0 16.0 16 S suffur 32.1	9 F fluorine 19.0 17 Cl chlorine 35.5	10 Ne 20.2 18 Ar argon 39.9
19 K potassium 39.1	24.3 20 Ca calcium 40.1	21 Sc scandum 45.0	22 Ti titanium 47.9	23 V venadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ion 55.8	27 Co cobat 58.9	28 Ni nickel 58.7	29 Cu 63.5	30 Zn zho 65.4	31 Ga gallum 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb nubidium 85.5	38 Sr strontium 87.6	39 Y yttrium 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh rhodium 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indum 114.8	50 Sn ^{tin} 118.7	51 Sb antimony 121.8	52 Te tellurium 127.6	53 I 126.9	54 Xe ^{xenon} 131.3
55 Cs caesium 132.9	56 Ba ^{bailum} 137.3	57–71 Ianthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir iidum 192.2	78 Pt platinum 195.1	79 Au ^{gold} 197.0	80 Hg mercury 200.6	81 T2 thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At estatine	86 Rn radon
87 Fr francium	88 Ra radum	89—103 actinoids	104 Rf notiverforstium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt metnerium	110 Ds dermetectium	111 Rg roentgenium	112 Cn copernicium		114 FZ flerovium		116 Lv livermorium		

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge