

GCSE Chemistry B (Twenty First Century Science)

J258/03 Breadth in chemistry (Higher Tier)

Question Set 2

		The water is fizzy because it contains dissolved carbon dioxide gas. The carbon dioxide comes from the decomposition of rocks that contain carbonate compounds.	
		One compound found in rocks is magnesium carbonate.	
		Ali investigates the decomposition of magnesium carbonate by heating a small amount in a test tube. This is the equation for the reaction.	
		$MgCO3(s) \rightarrow MgO(s) + CO2(g)$	
(a)		Ali weighs the test tube before and after heating.	
		The mass of the test tube after heating is less.	
		Ali says that this means the law of conservation of mass is not correct.	
		Explain why Ali is wrong .	[2]
(b)		Calculate the atom economy for the production of carbon dioxide in this reaction.	
		Use the formula: atom economy = $\frac{\text{mass of atoms in desired product}}{\text{total mass of atoms in reactants}} \times 100\%$	
		Give your answer to 1 decimal place.	
		Atom economy = %	[4]
(c)		In theory, 42.0 g of MgCO3 loses 22.0 g of carbon dioxide when it completely decomposes.	
		Ali heats 4.2 g of MgCO ₃ .	
	(i)	Calculate the mass of carbon dioxide lost when 4.2 g of MgCO ₃ completely decomposes.	
		Mass = g	[1]
	(ii)	In Ali's experiment, the mass of carbon dioxide lost is 1.8 g.	
		Calculate the percentage yield of carbon dioxide in Ali's experiment.	
		Percentage yield = %	[1]

Fizzy water can be found naturally.

1

(d) Magnesium oxide, MgO, is an ionic compound.

Draw a 'dot and cross' diagram for the ions in magnesium oxide.

Show the outer electron shells only.

[2]

Total Marks for Question Set 2:10

Resource Materials

The Periodic Table of the Elements

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	2 He helium 4.0
3 Li Ithium 6.9	4 Be beryllum 9.0											5 B boron 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O oxygen 16.0	9 F fluorine 19.0	10 Ne neon 20.2
11 Na sodium 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S sulfur 32.1	17 Cl chlorine 35.5	18 Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ion 55.8	27 Co cobet 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zho 65.4	31 Ga gallum 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y ythlum 88.9	40 Zr ziroonium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru rufterium 101.1	45 Rh modium 102.9	46 Pd paladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indum 114.8	50 Sn tin 118.7	51 Sb antimory 121.8	52 Te telurium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba barlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir Hidum 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitmenium	110 Ds darmetactium	111 Rg roentgenium	112 Cn copernicium		114 F <i>I</i> flerovium		116 Lv Ivermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge