

GCSE Chemistry B (Twenty First Century Science) J258/02 Depth in chemistry (Foundation Tier)

Question Set 23

(a) Which molecules are elements and which are compounds?

Tick (\checkmark) **one** box in each row.

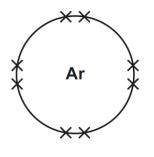
	Element (3)	Compound (3)
carbon dioxide		
chlorine		
hydrogen		
water		

[2]

(b) How do the dot and cross diagrams in **Fig. 1.1** show that all of these molecules are simple covalent?

Tick (\checkmark) **two** boxes.

They are all gases.	
They bond by sharing electrons.	
They contain only a few atoms.	
They have electrons in their outer shells.	


[2]

[2]

- (c) How does the dot and cross diagram in **Fig. 1.1** show that carbon dioxide has double bonds?
- (d) Using **Fig. 1.1**, complete the table to show how many bonds each atom forms.

Atom	Number of bonds
hydrogen	
oxygen	2
carbon	
chlorine	

(e) Argon is a gas. The arrangement of electrons in the outer shell of argon is shown in **Fig. 1.2**.

Explain **how** and **why** argon is different to the simple covalent molecules shown in **Fig. 1.1**.

Total Marks for Question Set 23: 10

[2]

[2]

Resource Materials

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2			Key omic numl Symbol name ve atomic								13	14	15	16	17	18 2 He helium 4.0
3 Li 101400 6.9 11 Na	4 Be beryllum 9.0 12 Mg											5 B 10.8 13 Al	6 C carbon 12.0 14 Si	7 N nitrogen 14.0 15 P	8 O 39990 16.0 16 S	9 F fluorine 19.0 17 Cl	10 Ne 20.2 18 Ar
sodium 23.0	magnesium 24.3	3	4	5	6	7	8	9	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sullur 32.1	chlorine 35.5	argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandum 45.0	22 Ti ttanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe 55.8	27 Co cobat 58.9	28 Ni nickel 58.7	29 Cu 63.5	30 Zn zinc 65.4	31 Ga gallium 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb nubidium 85.5	38 Sr strontium 87.6	39 Y yttilum 88.9	40 Zr zirconium 91.2	41 Nb ^{nioblum} 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru rutherium 101.1	45 Rh ^{rhodium} 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In ^{indium} 114.8	50 Sn ¹¹¹ 8.7	51 Sb antimony 121.8	52 Te witurium 127.6	53 I icdine 126.9	54 Xe ^{xunon} 131.3
55 Cs caesium 132.9	56 Ba ^{barlum} 137.3	57–71 Ianthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os csmium 190.2	77 Ir iidum 192.2	78 Pt platinum 195.1	79 Au ^{gold} 197.0	80 Hg mercury 200.6	81 T <i>1</i> thallium 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radum	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt metrorium	110 Ds dermetactium	111 Rg roentgenium	112 Cn copernicium		114 FZ flerovium		116 Lv Ivermorium		

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge