

GCSE Chemistry B (Twenty First Century Science) J258/02 Depth in chemistry (Foundation Tier)

Question Set 15

Eve does an experiment to find out if chlorine is more reactive than iodine.

She adds a few drops of chlorine water to aqueous potassium iodide.

aqueous potassium iodide

solution turns brown

The solution turns brown and there is an increase in temperature.

She writes this equation for the reaction.

$\mathrm{C}l_2$ (aq)	+	2KI()	\rightarrow	I ₂ (aq)	+	2KCl ()	
Add the mis	sing s		[1]				

(b)	Write a word equation for this reaction.	[1]
(c)	Explain why the solution turns brown.	[1]
(d)	Complete the sentences about this reaction by putting a ring around one word in each line.	
	The temperature increase shows that the reaction is endothermic / exothermic.	

The reaction happens because chlorine is **more / less** reactive than iodine.

This type of reaction is called **displacement / precipitation**.

The reaction makes iodine and a metal / salt.

[3]

Total Marks for Question Set 15: 6

(a)

Resource Materials

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol relative atomic mass									13	14	15	16	17	18 2 He ^{helum} 4.0
3 Li thium 6.9	4 Be beryllum 9.0											5 B boton 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O cxygen 16.0	9 F fluorine 19.0	10 Ne 20.2
11 Na sodium 23.0	12 Mg megnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S sulfur 32.1	17 Cl chlorine 35.5	18 Ar ergon 39.9
19 K 39.1	20 Ca calcium 40.1	21 Sc scandum 45.0	22 Ti ttanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ion 55.8	27 Co cobat 58.9	28 Ni ^{nickel} 58.7	29 Cu 63.5	30 Zn 2inc 65.4	31 Ga ^{gallum} 69.7	32 Ge ^{germanium} 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb nubidium 85.5	38 Sr strontium 87.6	39 Y ytsium 88.9	40 Zr zirconium 91.2	41 Nb ^{nioblum} 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru rutherium 101.1	45 Rh rhodium 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indum 114.8	50 Sn ¹¹ 118.7	51 Sb antimony 121.8	52 Te wturium 127.6	53 I iodine 126.9	54 Xe xencn 131.3
55 Cs caesium 132.9	56 Ba ^{barlum} 137.3	57–71 lanthanoids	72 Hf halnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os csmium 190.2	77 Ir ^{iridum} 192.2	78 Pt platinum 195.1	79 Au ^{gold} 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At estative	86 Rn radon
87 Fr francium	88 Ra radum	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt metrerium	110 Ds dermetectium	111 Rg roentgenium	112 Cn copernicium		114 F <i>l</i> flerovium		116 Lv Ivermorium		

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge