

GCSE Chemistry B (Twenty First Century Science) J258/02 Depth in chemistry (Foundation Tier)

Question Set 13

1 Polymers are made when small monomer molecules react together.

The diagram shows a general formula for some monomers that react to make addition polymers.

represents an atom or group of atoms in the formula.

The table shows the formulae of some monomers.

Name of polymer	Monomer	represents
poly(ethene)	H C=C H	Н
PVC		C1
poly(propene)	H C=CH ₃	

(a) Complete the table by filling in the missing information.

[2]

(b) The structure of each polymer can be shown as a repeating unit.

Complete the diagram below by drawing the bonds in the **repeating unit** of poly(ethene).

$$\begin{bmatrix} \mathsf{H} & \mathsf{H} \\ \mathsf{C} & \mathsf{C} \\ \mathsf{H} & \mathsf{H} \end{bmatrix}_{n}$$

[2]

- (c) The formula of the poly(propene) monomer can be shown as CH₂CH(CH₃).
 - (i) Calculate the relative formula mass of the poly(propene) monomer.

Use the Periodic Table to help you.

((ii)	The relative formula mass of an ethene monomer is 28.	
		A poly(ethene) polymer has an average relative formula mass of 11200.	
		How many ethene monomers have been joined to make this poly(ethene) polymer?	
		Number of ethene monomers =	[1]

Total Marks for Question Set 13:7

Resource Materials

The Periodic Table of the Elements

(1)	(2)					_						(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	2 He helium 4.0
3 Li	4 Be	· '				•						5 B	6 C	7 N	8 O	9 F	10 Ne
6.9	beryllium 9.0											10.8	carbon 12.0	nitrogen 14.0	0xygen 16.0	fluorine 19.0	neon 20.2
11 Na sodium 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 AI aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S suffur 32.1	17 Cl chlorine 35.5	18 Ar argon 39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K potassium 39.1	Ca calcium 40.1	Sc scandium 45.0	Ti titanium 47.9	vanadium 50.9	Cr chromium 52.0	Mn manganese 54.9	Fe ion 55.8	Co cobst 58.9	Ni nickel 58.7	Cu copper 63.5	Zn zine 65.4	Ga gallium 69.7	Ge germanium 72.6	As arsenic 74.9	Se selenium 79.0	Br bromine 79.9	Kr krypton 83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb rubidium 85.5	Sr strontium 87.6	Y ythrium 88.9	Zr zirconium 91.2	Nb niobium 92.9	Mo molybdenum 95.9	Tc technetium	Ru ruthenium 101.1	Rh rhodium 102.9	Pd paladium 106.4	Ag silver 107.9	Cd cadmium 112.4	In indum 114.8	Sn tin 118.7	Sb antimony 121.8	Te telurium 127.6	I iodine 126.9	Xe xenon 131.3
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs caesium 132.9	Ba barium 137.3	lanthanoids	Hf hafnium 178.5	Ta tantalum 180.9	tungsten 183.8	Re menium 186.2	Os osmium 190.2	Ir Hidum 192.2	Pt platinum 195.1	Au gold 197.0	Hg mercury 200.6	T <i>I</i> thallium 204.4	Pb lead 207.2	Bi bismuth 209.0	Po polonium	At astatine	Rn
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt metrerium	110 Ds darmetactium	111 Rg roentgenium	112 Cn copernicium		114 F <i>I</i> flerovium		116 Lv Ivermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge