

GCSE Chemistry B (Twenty First Century Science) J258/02 Depth in chemistry (Foundation Tier)

Question Set 11

About 150 years ago, Dimitri Mendeleev developed an early version of the Periodic Table.

His Periodic Table had eight groups. He put elements with similar properties into the same group.

The table shows some of the elements that Mendeleev grouped together.

Mendeleev's groups												
1	2	3	4	5	6	7	8					
Li Na K Cu	Be Mg Zn	B Al	C Si	N P	O S Cr	F C <i>l</i> Br	Fe Co Ni					

(a) Some of Mendeleev's groups contain similar elements to groups in the modern Periodic Table.

Which group in Mendeleev's table contains the elements now found in Group 14 of the modern Periodic Table?

[1]

(b) None of the elements from Group 18 of the modern Periodic Table are shown on Mendeleev's table.

Suggest a reason why.

[1]

(c) Mendeleev put some of the transition metals into his Group 8.

He put some other transition metals into the other groups.

Give the symbols for **three** transition metals in Mendeleev's table that he did not put in Group 8.

[2]

(d)		The transition metals are in because their properties are		e block of the modern Periodic Table o each other.								
		Which property do all the transition metals have?										
		Tick (✓) one box.										
		They act as catalysts in reactions.										
		They have low melting points and boiling points.										
		They react very qui	ckly with o	cold water.								
		They are coloured o	gases at r	pom temperature.								
					[1]							
(e)		Transition metal salts are acidic.										
		Sundip does an experiment to test the acidity of some solutions of transition metal salts.										
		She uses Universal Indicator and a colour chart to find the pH of each salt.										
		These are Sundip's results.										
		Name of salt pH										
		copper sulfate	3									
		iron sulfate	3									
		zinc sulfate	4									
		nickel sulfate	4									
	(i)	Describe how Sundip uses Universal Indicator to test the pH of the solutions of the salts.										
	(ii)	Explain why she needs to improve her precision and suggest how she can change her experiment to do this.										

Total Marks for Question Set 11:9

Resource Materials

The Periodic Table of the Elements

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol nama relative atomic mass									13	14	15	16	17	2 He helium 4.0
3 Li lithium 6.9	4 Be beryllium 9.0											5 B botton 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O oxygen 16.0	9 F fluorine 19.0	10 Ne 1000 20.2
Na sodium 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S suffer 32.1	17 C <i>l</i> chlorine 35.5	18 Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe iron 55.8	27 Co cotest 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zhe 65.4	31 Ga gallium 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y yttrium 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh rhodium 102.9	46 Pd pelledium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indum 114.8	50 Sn tin 118.7	51 Sb antimony 121.8	52 Te wturium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba berlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir Hidum 192.2	78 Pt pletinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fir francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordum	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitmenum	110 Ds dametactium	111 Rg roentgenium	112 Cn copernicium		114 F <i>l</i> flerovium		116 Lv Ivermorium		

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

of the University of Cambridge