

GCSE Chemistry B (Twenty First Century Science) J258/02 Depth in chemistry (Foundation Tier)

Question Set 6

1 Amir makes some copper chloride. He reacts copper oxide with dilute hydrochloric acid.

This is an equation for the reaction.

copper oxide + hydrochloric acid
$$\rightarrow$$
 copper chloride + water CuO + 2HCl \rightarrow CuCl₂ + H₂O

- (a) Amir does a calculation to work out how much copper chloride he can make from some copper oxide (the **theoretical yield**).
 - (i) He starts by working out the relative formula masses of the compounds in the equation.

Complete **Table 6.1** by working out the missing relative formula masses.

Use the Periodic Table to help you.

Name of compound	Formula	Relative formula mass					
copper oxide	CuO	79.5					
hydrochloric acid	HC1						
copper chloride	CuCl ₂	134.5					
water	H ₂ O						

Table 6.1

[2]

(ii) Amir uses 8 g of copper oxide in his experiment.

What is the theoretical yield of copper chloride from 7.95 g of copper oxide? Use **Table 6.1** and the equation to help you.

Put a ring around the correct answer.

(b) Amir adds 8 g of solid copper oxide to a small amount of dilute hydrochloric acid in a beaker. Some of the copper oxide does not react. He now has a mixture which contains a solution of copper chloride and some solid copper oxide. solution of copper chloride -

Amir uses different techniques to separate solid copper oxide and to obtain (i) crystals of copper chloride from the mixture.

Draw lines from each substance to the correct technique.

Substance	Technique					
	Distillation					
Solid copper oxide	Evaporation					
Copper chloride crystals	Filtration					
	Titration					

(ii) Am

Suggest a reason why.

solid copper oxide -

[1]

Total Marks for Question Set 6: 6

Resource Materials

The Periodic Table of the Elements

(1)	(2)					_						(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	2 He helium 4.0
3 Li ithium 6.9	4 Be beryllum 9.0											5 B boron 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O oxygen 16.0	9 F fluorine 19.0	10 Ne neon 20.2
Na sodium 23.0	Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S suffer 32.1	17 Cl chlorine 35.5	18 Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe lon 55.8	27 Co cobst 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zine 65.4	31 Ga gallium 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y ythlum 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh modum 102.9	46 Pd pelledium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indum 114.8	50 Sn tin 118.7	51 Sb antimony 121.8	52 Te wturium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba barlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir Hidum 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohilum	108 Hs hassium	109 Mt meitrerium	110 Ds damstadtium	111 Rg roentgenium	112 Cn copernicium		114 F <i>l</i> flerovium		116 Lv livermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge