

GCSE Chemistry B (Twenty First Century Science) J258/02 Depth in chemistry (Foundation Tier)

Question Set 3

- Mauritius is a country of small islands surrounded by sea.
 There is almost no fresh water in Mauritius
 - (a) A distillation process is used to produce fresh water. Statements A-G describe some correct and some incorrect stages in the distillation process.

Α	Cold water is used to cool the steam.
В	Water evaporates.
С	Water condenses.
D	Water is heated.
Е	Seawater is taken from the sea.
F	Water is sent through pipes to homes.
G	Salt is filtered out from the seawater.

Put the **correct** statements in the correct order.

The first and last have been done for you.

E	F
---	---

[2]

(b) (i) Chlorine is used to treat drinking water before it is sent to homes. The waste water from homes is treated with oxygen.

The table shows some information about oxygen and chlorine.

Gas	Formula of gas	Type of water treated	Reason gas is used in water treatment
oxygen		waste water	removes waste dissolved in water
chlorine		drinking water	

Table 1.1

Complete **Table 1.1** by filling in the missing information.

(ii) Complete **Table 1.2** below to show the tests and results used to identify oxygen and chlorine gas.

Gas	Test	Result
oxygen		
chlorine	damp blue litmus paper	

Table 1.2

[3]

Total Marks for Question Set 3:7

Resource Materials

The Periodic Table of the Elements

(1)	(2)					_						(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	18 2 He helium 4.0
3 Li Ithium 6.9	4 Be beryllum 9.0											5 B boton 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O oxygen 16.0	9 F fluorine 19.0 17	10 Ne neon 20.2
Na sodium 23.0	Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S sulfur 32.1	C1 chlorine 35.5	Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ion 55.8	27 Co cobet 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zine 65.4	31 Ga gallium 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y yttrlum 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh rhodium 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indum 114.8	50 Sn tin 118.7	51 Sb antimony 121.8	52 Te wturlum 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba barlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir Hdum 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrlum	108 Hs hassium	109 Mt meltrerium	110 Ds darmetactium	111 Rg roentgenium	112 Cn copemicium		114 F <i>l</i> flerovium		116 Lv Ivermorium		

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

of the University of Cambridge