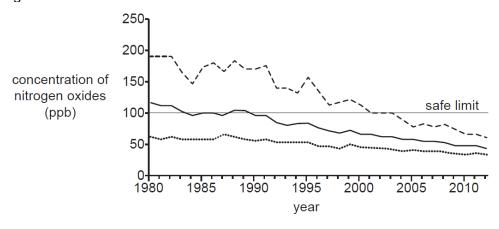


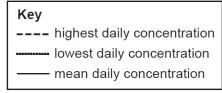
GCSE Chemistry B (Twenty First Century Science) J258/02 Depth in chemistry (Foundation Tier)

Question Set 2

- Nitrogen oxides are pollutant gases that are produced when coal burns in a power station
 - (a) (i) Nitrogen monoxide is one type of nitrogen oxide that is formed in a power station.

The reaction that forms nitrogen oxide can be shown in an equation.


(ii) Which statements about nitrogen oxides are true and which are false? Put a tick (✓) in one box in each row.


	True	False
Nitrogen oxides are also produced in car engines.		
Nitrogen oxides form at very high temperatures.		
NO ₂ and NH ₃ are examples of nitrogen oxides.		

[2]

[2]

(b) The graph shows information about the concentration in parts per billion (ppb) of nitrogen oxides in the air between 1980 and 2012.

Describe how the **highest daily** concentration of nitrogen oxides changed between 1980 and 2012.

- (c) The World Health Organisation recommends a safe limit for people to be exposed to nitrogen oxides. They recommend that this limit is 100 ppb.
 - (i) Why is it necessary to set a safe limit for exposure to nitrogen oxides?

[1]

(ii) Layla and Mia talk about the graph.

Layla says that the nitrogen oxides have been below the safe limit since 1990. Mia says that nitrogen oxides have only been below the safe limit since 2004.

Explain how the graph could be used to support both of these ideas.

[2]

Total Marks for Question Set 2: 9

Resource Materials

The Periodic Table of the Elements

(1)	(2)					_						(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	2 He helium 4.0
3 Li lithium 6.9	4 Be beryllum 9.0											5 B boron 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O cxygen 16.0	9 F fluorine 19.0	10 Ne neon 20.2
Na sodium 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S sulfur 32.1	17 C <i>l</i> chlorine 35.5	18 Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ion 55.8	27 Co cobet 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zhe 65.4	31 Ga gallium 69.7	32 Ge germenium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y yttrium 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh nodium 102.9	46 Pd pelledium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn un 118.7	51 Sb antimony 121.8	52 Te telurium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba berlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os csmium 190.2	77 Ir Hidum 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohilum	108 Hs hassium	109 Mt meitrerium	110 Ds darmstactium	111 Rg roentgenium	112 Cn copernicium		114 F <i>l</i> flerovium		116 Lv Ivermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge