

GCSE Chemistry B (Twenty First Century Science) J258/01 Breadth in Chemistry (Foundation Tier)

Question Set 20

Dalton was one of the first scientists to model the atom.

Rutherford later developed an improved model of the atom from experiments.

Rutherford's model describes:

- a small positive nucleus
- the nucleus surrounded by empty space
- negatively charged particles orbiting in this empty space.
- (a) Describe how Dalton's model of the atom was different to Rutherford's.
- (b) Name the 'negatively charged particles' in Rutherford's model.

[1]

[1]

(c) We currently know that the nucleus of an atom contains protons and neutrons.

Complete the table by filling in the blank spaces.

	Relative Charge	Relative Mass
Proton	+1	1
Neutron		

[2]

(d) The table shows the number of protons and neutrons in a sodium atom.

Complete the table by filling in the blank spaces.

	Atomic number	Protons	Mass number	Neutrons
Sodium	11	11	23	12
Fluorine	9		19	

1

[2]

(e) Kai finds some information on the internet.

	Approximate size (m)
Hydrogen atom	5.3 × 10 ⁻¹¹
Hydrogen molecule	2.9 × 10 ⁻¹⁰
Oxygen molecule	3.5 × 10 ⁻¹⁰
Proton	8.7 × 10 ⁻¹⁶
Xenon atom	1.1 × 10 ^{−10}

Table 1.1

Kai writes some notes:

- 1 Atoms are smaller than molecules.
- 2 Atoms are smaller than protons.

Is Kai correct?

Use the information in **Table 1.1** to explain your answer.

[2]

Total Marks for Question Set 20: 8

Resource Materials

Question Set No: 20

						The P	eriodi	c Tab	le of t	he Ele	ment	6					
(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	18 2 He helium 4.0
3 Li Mithium 6.9	4 Be beryllum 9.0											5 B boton 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O ‱ygen 16.0	9 F fluorine 19.0	10 Ne 20.2
11 Na ^{sodium} 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S sultar 32.1	17 Cl chlorine 35.5	18 Ar argon 39.9
19 K potassium 39.1	20 Ca ^{calcium} 40.1	21 Sc scandium 45.0	22 Ti ttanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn ^{manganese} 54.9	26 Fe ion 55.8	27 Co cobat 58.9	28 Ni ^{nickel} 58.7	29 Cu ^{copper} 63.5	30 Zn zinc 65.4	31 Ga ^{gallum} 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb nitikilum 85.5	38 Sr strontium 87.6	39 Y yttilum 88.9	40 Zr zirconium 91.2	41 Nb nioblum 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru rutherium 101.1	45 Rh rhodium 102.9	46 Pd paladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In ^{indum} 114.8	50 Sn ^{tin} 118.7	51 Sb antimony 121.8	52 Te teturium 127.6	53 I 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba ^{barlum} 137.3	57–71 Ianthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re ftenium 186.2	76 Os osmium 190.2	77 Ir ^{iridum} 192.2	78 Pt platinum 195.1	79 Au ^{gold} 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra redum	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 Ds darmstactium	111 Rg roentgenium	112 Cn copernicium		114 FZ flerovium		116 Lv Ivermorium		

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge