

GCSE Chemistry B (Twenty First Century Science) J258/01 Breadth in Chemistry (Foundation Tier)

Question Set 14

Multiple Choice Questions

	Chemists add chlorine to water. This makes the water suitable to drink.													
(a)	Choose the test for chlorine.													
	Tick (✓) one box.													
	Makes a 'pop' with a lighted splint.													
	Relights a glowing splint.													
	Turns blue litmus red and then white.													
	Turns limewater milky or cloudy.													
(b)	Choose words from the list below to complete the sentences.	[1]												
	You may use each word once, more than once, or not at all.													
	animals diseases microorganisms smelly toxic													
	Chlorine is used to killin water.													
	This stops the untreated water from causing													
	Chlorine can be hazardous because it is													
(c)	A chlorine atom has seven electrons in its outer shell.	[3]												
	Complete the 'dot and cross' diagram for an HC <i>l</i> molecule.													
	You only need to show outer-shell electrons.													
	Cl * H													
		[2]												

Total Marks for Question Set 14: 6

1

Resource Materials

						The P	eriodi	c Tab	le of t	he Ele	ments	5					
(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	2 He
3 Li Ithium 6.9	4 Be beryllum 9.0											5 B boron 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O exygen 16.0	9 F fluorine 19.0	10 Ne neon 20.2
11 Na sodium 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S suffer 32.1	17 C <i>l</i> chlorine 35.5	18 Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandum 45.0	22 Ti ttanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ion 55.8	27 Co cobat 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn ^{zho} 65.4	31 Ga gallium 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y ythium 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh modium 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn tin 118.7	51 Sb antimony 121.8	52 Te telurium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba berlum 137.3	57–71 lenthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir Mdum 192.2	78 Pt pletinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 TI thallium 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra redium	89-103 actinoids	104 Rf	105 Db dubnium	106 Sg seaborgium	107 Bh bohilum	108 Hs hassium	109 Mt metrerium	110 Ds dametactium	111 Rg roentgenium	112 Cn copernicium		114 FI flerovium		116 Lv Ivermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge