

GCSE Chemistry A (Gateway Science) J248/04 Chemistry A C4-C6 and C7 (Higher Tier)

Question Set 23

1 The reversible reaction between carbon dioxide and hydrogen makes methane and water.

(a) In a sealed container, this reversible reaction forms a dynamic equilibrium.What is meant by the term dynamic equilibrium?

Refer to both concentration and rate of reaction in your answer.

(b) A student investigates this reaction between carbon dioxide and hydrogen.

He predicts that 11.0 g of carbon dioxide should make 4.0 g of methane.

In an experiment, he finds that 11.0 g of carbon dioxide makes 2.2 g of methane.

Calculate the percentage yield of methane.

Answer =% [2]

(c)* The student investigates the effect of changing pressure and changing temperature on this reaction.

 $CO_2(g) + 4H_2(g) \rightleftharpoons CH_4(g) + 2H_2(I)$

The table shows the percentage yield of methane in the equilibrium mixture under different conditions.

		Pressure (in atmospheres)					
		100	200	300	400		
Temperature (in °C)	300	35%	52%	65%	80%		
	600	30%	46%	58%	74%		
	900	23%	37%	47%	62%		
	1200	14%	25%	36%	48%		

He predicts that the reaction between carbon dioxide and hydrogen is endothermic and involves a reduction in the volume of gases.

Describe and explain whether his predictions are supported by the reaction and results in the table.

[6]

[2]

Total Marks for Question Set 23: 10

Resource Materials

(0)	18 He He 4.0	10 Neon 20.2	18 Ar 39.9	36 Kr krypton 83.8	54 Xe ^{xenon} 131.3	86 Rn ^{radon}	
(2)	1	9 19.0	17 C1 chlorine 35.5	35 Br ^{bromine} 79.9	53 I lodine 126.9	85 At _{astatine}	
(9)	16	8 0 0 16.0	16 S 32.1	34 Se selenium 79.0	52 Te tellurium 127.6	84 Po Polonium	116 Lv livermorium
(5)		7 N nitrogen 14.0	15 Phosphorus 31.0	33 As arsenic 74.9	51 Sb ^{antmony} 121.8	83 Bi ^{bismuth} 209.0	
(4)	14	6 C carbon 12.0	14 Si 28.1	32 Ge germanium 72.6	50 Sn ^{tin} 118.7	82 Pb lead 207.2	114 F1 fierovium
(3)	13	5 Baron 10.8	13 A1 aluminium 27.0	31 Ga ^{gallium} 69.7	49 In ^{indium} 114.8	81 T1 thallium 204.4	
			12	30 Zn ^{zinc} 65.4	48 Cd cadmium 112.4	80 Hg ^{mercury} 200.6	112 Cn copernicium
			5	29 Cu 63.5	47 Ag silver 107.9	79 Au ^{gold} 197.0	111 Rg roentgenium
5				28 Ni 58.7	46 Pd ^{palladum} 106.4	78 Pt platinum 195.1	110 DS ^{darmsta dijum}
თ				27 Co cobalt 58.9	45 Rh ^{thodium} 102.9	77 Ir ^{iidum} 192.2	109 Mt ^{meitnerium}
œ				26 Fe ^{Iron}	44 Ru ruthenium 101.1	76 Os ^{osmium} 190.2	108 Hs ^{hassium}
		_	7	25 Mn ^{manganese} 54.9	43 Tc technetium	75 Re ^{rhenium} 186.2	107 Bh ^{bohrium}
	ber mass		9	24 Cr chronium 52.0	42 Mo ^{molybdenum} 95.9	74 W tungsten 183.8	106 Sg ^{seaborgium}
Key mic numb Symbol e atomic /e atomic /			ъ	23 V vanadlum 50.9	41 Nb ^{niobium} 92.9	73 Ta tantalum 180.9	105 Db ^{dubnium}
	atc relativ		4	22 Ti ttanium 47.9	40 Zr ≊rconium 91.2	72 Hf hathium 178.5	104 Rf rutherfordium
				21 Sc scandium 45.0	39 yttrium 88.9	57-71 lanthanoids	89—1 03 actinolds
(2)	~	Be beryllum 9.0	12 Mg 24.3	20 Ca calclum 40.1	38 Sr 87.6	56 Ba barium 137.3	88 Ra ^{rađium}
(1)	hydrogen 1.0	3 Li Bithium 6.9	11 Na ^{sodium} 23.0	19 K potassium 39.1	37 Rb ^{rubidium} 85.5	55 Cs caesium 132.9	87 Fr francium

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge