

GCSE Chemistry A (Gateway Science) J248/04 Chemistry A C4-C6 and C7 (Higher Tier)

Question Set 15

1 Student A does a titration with an acid and an alkali.

He uses dilute sulfuric acid, sodium hydroxide solution and an indicator solution.

The diagram shows the apparatus he uses.

The student adds sodium hydroxide solution from the burette to the sulfuric acid until the indicator changes colour.

He then adds a few more drops of sodium hydroxide to be certain the sulfuric acid is neutralised.

He takes the final volume reading on the burette to find out how much alkali reacts with 25.0 cm³ of dilute sulfuric acid.

(a) Describe and explain how the student could improve his experiment to get a more accurate value.

[4]

(b) Student **B** does a titration.

Sodium hydroxide solution is slowly added to the beaker of dilute sulfuric acid.

The pH probe is connected to a datalogger.

Suggest how student **B**'s method is better than student **A**'s.

(i) What is the pH value when 15 cm³ of alkali has been added?

Answer = cm³ [1]

(ii) What volume of alkali is needed to exactly neutralise the sulfuric acid?

(d) Student B does another experiment.

This time she uses:

- 20.0 cm³ of dilute hydrochloric acid in the beaker
- sodium hydroxide solution of concentration 0.200 mol/dm³ in the burette.

Look at student **B**'s results.

Titration number	1	2	3	4
Final burette reading (cm ³)	26.9	27.6	27.0	28.2
Initial burette reading (cm ³)	0.5	2.5	1.2	3.2
Titre (volume of alkali used) (cm ³)	26.4	25.1	25.8	25.0

(i) Student B decides to only use the results from titration numbers 2 and 4.

Explain why.

[1]

(ii) Look at the equation for the reaction between hydrochloric acid, HC*I*, and sodium hydroxide, NaOH.

 $HCl + NaOH \rightarrow NaCl + H_2O$

Calculate the concentration of hydrochloric acid in mol/dm³. Use the average titre, in cm^3 , from titration numbers **2** and **4**.

Give your answer to **2** significant figures.

Answer = mol/dm^3 [4]

Total Marks for Question Set 15: 12

Resource Materials

(0)	18 He He 4.0	10 Neon 20.2	18 Ar 39.9	36 Kr krypton 83.8	54 Xe ^{xenon} 131.3	86 Rn ^{radon}	
(2)	1	9 19.0	17 C1 chlorine 35.5	35 Br ^{bromine} 79.9	53 I lodine 126.9	85 At _{astatine}	
(9)	16	8 0 0 16.0	16 S 32.1	34 Se selenium 79.0	52 Te tellurium 127.6	84 Po Polonium	116 Lv livermorium
(5)		7 N nitrogen 14.0	15 Phosphorus 31.0	33 As arsenic 74.9	51 Sb ^{antmony} 121.8	83 Bi ^{bismuth} 209.0	
(4)	14	6 C carbon 12.0	14 Si 28.1	32 Ge germanium 72.6	50 Sn ^{tin} 118.7	82 Pb lead 207.2	114 F1 fierovium
(3)	13	5 Baron 10.8	13 A1 aluminium 27.0	31 Ga ^{gallium} 69.7	49 In ^{indium} 114.8	81 T1 thallium 204.4	
			12	30 Zn ^{zinc} 65.4	48 Cd cadmium 112.4	80 Hg ^{mercury} 200.6	112 Cn copernicium
7				29 Cu 63.5	47 Ag silver 107.9	79 Au ^{gold} 197.0	111 Rg roentgenium
6				28 Ni 58.7	46 Pd ^{palladum} 106.4	78 Pt platinum 195.1	110 DS ^{darmsta dilum}
თ				27 Co cobalt 58.9	45 Rh ^{thodium} 102.9	77 Ir ^{iidum} 192.2	109 Mt ^{meitnerium}
œ				26 Fe Iron 55.8	44 Ru ruthenium 101.1	76 Os ^{osmium} 190.2	108 Hs ^{hassium}
~				25 Mn ^{manganese} 54.9	43 Tc technetium	75 Re ^{rhenium} 186.2	107 Bh ^{bohrium}
	ber mass		9	24 Cr chronium 52.0	42 Mo ^{molybdenum} 95.9	74 W tungsten 183.8	106 Sg ^{seaborgium}
Key mic numb Symbol ^{name} /e atomic r			ъ	23 V vanadlum 50.9	41 Nb ^{niobium} 92.9	73 Ta tantalum 180.9	105 Db ^{dubnium}
	atc relativ		4	22 Ti ttanium 47.9	40 Zr ≊rconium 91.2	72 Hf hathium 178.5	104 Rf rutherfordium
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				21 Sc scandium 45.0	39 yttrium 88.9	57-71 lanthanoids	89—1 03 actinolds
(2)	~	Be beryllum 9.0	12 Mg 24.3	20 Ca calclum 40.1	38 Sr 87.6	56 Ba barium 137.3	88 Ra ^{rađium}
(1)	hydrogen 1.0	3 Li Bithium 6.9	11 Na ^{sodium} 23.0	19 K potassium 39.1	37 Rb ^{rubidium} 85.5	55 Cs caesium 132.9	87 Fr francium

The Periodic Table of the Elements



#### **Copyright Information**

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge