

GCSE Chemistry A (Gateway Science) J248/04 Chemistry A C4-C6 and C7 (Higher Tier)

Question Set 10

1 (a) In an experiment, a mixture of ammonium chloride and calcium hydroxide is heated.

Ammonia gas, NH_3 , is made.

 $2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O$

A student adds 5.00 g of ammonium chloride to an excess of calcium hydroxide.

Calculate the maximum **volume of ammonia gas** that could be made at room temperature and pressure.

One mole of a gas occupies 24 dm³ at room temperature and pressure.

Volume of ammonia gas = dm³ [2]

(b) In another experiment a student reacts sodium hydroxide solution with dilute hydrochloric acid.

NaOH + HC $l \rightarrow$ NaCl + H₂O

(i) 35.0 cm³ of 0.075 mol/dm³ hydrochloric acid, HC*l*, are added to 25.0 cm³ of 0.100 mol/dm³ sodium hydroxide solution, NaOH.

Use the information to determine which reactant is **in excess**.

[3]

(ii) To find the exact amount of dilute hydrochloric acid that reacts with 25.0 cm³ of the sodium hydroxide solution, the student does a titration.

Look at the student's results. The rough titration is **not** shown.

	Titration 1	Titration 2	Titration 3	Titration 4
Final burette reading (cm ³)	36.30	38.60	39.25	38.30
Initial burette reading (cm ³)	0.00	2.80	4.05	2.10
Volume of acid used (cm ³)	36.30	35.80	35.20	36.20

Use the student's **concordant** results to calculate the mean volume of hydrochloric acid required.

(c) In another titration 25.0 cm^3 of potassium hydroxide solution, KOH, are titrated with 0.200 mol/dm³ sulfuric acid, H₂SO₄.

 $2\mathsf{KOH}~+~\mathsf{H}_2\mathsf{SO}_4~\rightarrow~\mathsf{K}_2\mathsf{SO}_4~+~2\mathsf{H}_2\mathsf{O}$

 $24.80\,\text{cm}^3$ of sulfuric acid are needed to neutralise $25.0\,\text{cm}^3$ of the potassium hydroxide solution.

Calculate the concentration of the potassium hydroxide solution in mol/dm³.

Concentration = mol/dm³ [4]

Total Marks for Question Set 10: 11

Resource Materials

(0)	18 He He 4.0	10 Neon 20.2	18 Ar 39.9	36 Kr krypton 83.8	54 Xe ^{xenon} 131.3	86 Rn ^{radon}	
(2)	1	9 19.0	17 C1 chlorine 35.5	35 Br ^{bromine} 79.9	53 I lodine 126.9	85 At _{astatine}	
(9)	16	8 0 0 16.0	16 S 32.1	34 Se selenium 79.0	52 Te tellurium 127.6	84 Po Polonium	116 Lv livermorium
(5)		7 N nitrogen 14.0	15 Phosphorus 31.0	33 As arsenic 74.9	51 Sb ^{antmony} 121.8	83 Bi ^{bismuth} 209.0	
(4)	14	6 C carbon 12.0	14 Si 28.1	32 Ge germanium 72.6	50 Sn ^{tin} 118.7	82 Pb lead 207.2	114 F1 fierovium
(3)	13	5 Baron 10.8	13 A1 aluminium 27.0	31 Ga ^{gallium} 69.7	49 In ^{indium} 114.8	81 T1 thallium 204.4	
			12	30 Zn ^{zinc} 65.4	48 Cd cadmium 112.4	80 Hg ^{mercury} 200.6	112 Cn copernicium
			5	29 Cu 63.5	47 Ag silver 107.9	79 Au ^{gold} 197.0	111 Rg roentgenium
			10	28 Ni 58.7	46 Pd ^{palladum} 106.4	78 Pt platinum 195.1	110 DS ^{darmsta dijum}
თ				27 Co cobalt 58.9	45 Rh ^{thodium} 102.9	77 Ir ^{iidum} 192.2	109 Mt ^{meitnerium}
			8	26 Fe Iron 55.8	44 Ru ruthenium 101.1	76 Os ^{osmium} 190.2	108 Hs ^{hassium}
		_	7	25 Mn ^{manganese} 54.9	43 Tc technetium	75 Re ^{rhenium} 186.2	107 Bh ^{bohrium}
	ber mass		9	24 Cr chronium 52.0	42 Mo ^{molybdenum} 95.9	74 W tungsten 183.8	106 Sg ^{seaborgium}
Key mic numb Symbol name /e atomic r			ъ	23 V vanadlum 50.9	41 Nb ^{niobium} 92.9	73 Ta tantalum 180.9	105 Db ^{dubnium}
	atc relativ		4	22 Ti ttanium 47.9	40 Zr ≊rconium 91.2	72 Hf hathium 178.5	104 Rf rutherfordium
				21 Sc scandium 45.0	39 yttrium 88.9	57-71 lanthanoids	89—1 03 actinolds
(2)	~	Be beryllum 9.0	12 Mg 24.3	20 Ca calclum 40.1	38 Sr 87.6	56 Ba barium 137.3	88 Ra ^{rađium}
(1)	hydrogen 1.0	3 Li Bithium 6.9	11 Na ^{sodium} 23.0	19 K potassium 39.1	37 Rb rubidium 85.5	55 Cs caesium 132.9	87 Fr francium

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge