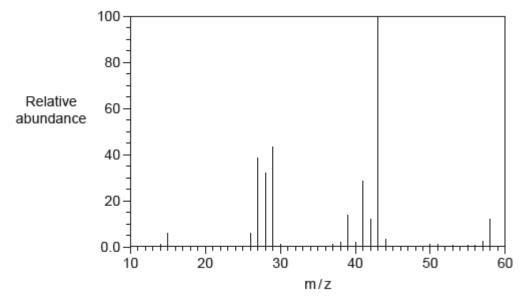


GCSE Chemistry A (Gateway Science) J248/04 Chemistry A C4-C6 and C7 (Higher Tier)

Question Set 1

C4: Predicting and identifying reactions and products


Multiple Choice Questions

	Α	Instruments can analyse very small amounts and carry out the analyses slowly.	
	В	Instruments are very accurate and use large amounts of substances.	
	С	Instruments are very accurate and carry out the analyses slowly.	
	D	Instruments are very accurate and can run all the time.	
	Your ans	wer	[1]
2	A studen	t tests a solution for chloride ions .	
	She adds	s dilute nitric acid to the solution. She then adds a few drops of silver nitrate	
	solution.	Why does she need to add dilute nitric acid in this test?	
	Α	To increase the pH of the solution.	
	В	Nitrate ions are needed for the test to work.	
	С	To make sure that no carbonate ions are present.	
	D	The test only works in alkaline conditions.	
	Your ans	wer	[1]
3	Which sta	atement about a mass spectrum of a molecule is correct?	
	Α	Each peak represents an atom in the molecule.	
	В	The charge to mass ratio of the molecular ion peak is equal to the relative formula mass of the molecule.	
	С	The peak with the highest relative abundance represents the molecular ion.	
	D	The peak on the far right of the spectrum represents the molecular ion.	
	Your ans	wer	[1]

Which statement describes the advantages of instrumental methods of analysis?

1

4 Look at the mass spectrum of a carbon compound.

Which carbon compound is the mass spectrum from?

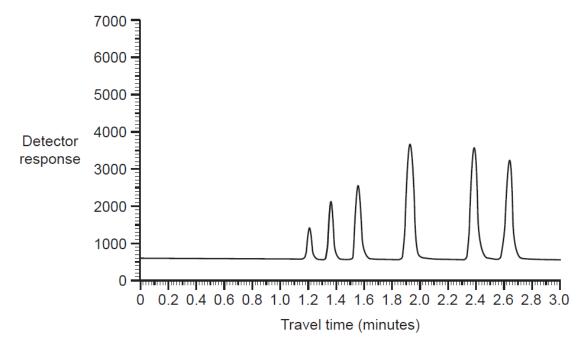
- A C_2H_2
- B C₂H₅
- C C_3H_7
- D C₄H₁₀

Your answer		
-------------	--	--

[1]

5 Look at the data about four elements.

Element	Melting point (°C)	Density (g/cm³)	lons formed
Α	98	0.97	A ⁺
В	-101	0.0032	B ⁻
С	1535	7.9	C ²⁺ , C ³⁺
D	660	2.7	D ³⁺


Which element is a transition element?

Your answer	[41]
	l'i

6	Chlorine	can displace iodine from iodide ions.									
	Which equation represents this reaction?										
	Α	$Cl + I^- \rightarrow Cl^- + I$									
	В	$Cl^- + I_2 \rightarrow 2I^- + Cl_2$									
7	С	$Cl_2 + 2I^- \rightarrow 2Cl^- + I_2$									
	D	$Cl_2 + I^- \rightarrow 2Cl^- + I$									
	Your ans	wer	[1]								
7	Group 1	elements get more reactive down the group.									
	Which st	atement explains why?									
	Α	The outer electron is closer to the nucleus and lost more easily.									
	В	The outer electron is further from the nucleus and lost more easily.									
	С	There is less shielding from the inner electrons.									
	D	There is more attraction between the nucleus and the outer electron down the group.									

[1]

Your answer

Which of the following statements about a gas chromatogram is **not** correct?

- **A** A gas chromatogram can detect very small amounts of substances.
- **B** One compound produces several peaks.
- **C** The area of each peak shows the relative amount of each substance.
- **D** The retention time is different for different substances.

Your answer		[1]
-------------	--	-----

9	A student wants to test the purity of a liquid by testing its boiling point.										
	The act	ual boiling point of the pure liquid is 85°C.									
	Which equation represents the percentage (%) difference between the student's value and the actual value?										
	Α	A % difference = $100 \times \frac{\text{(student's value in °C)} - 85 °C}{85 °C}$.									
	В	% difference = 100 × $\frac{85^{\circ}\text{C} - (\text{student's value in }^{\circ}\text{C})}{85^{\circ}\text{C}}$.									
	C % difference = $\frac{\text{(student's value in °C)} - 85 °C}{85 °C}$.										
	D	% difference = $\frac{85^{\circ}\text{C} - (\text{student's value in }^{\circ}\text{C})}{85^{\circ}\text{C}}$.									
	Your an	swer	[1]								
10	Which s	tatement is correct for a Group 1 element?									
	Α	It dissolves in water to form a bleach.									
	В	It is an inert gas.									
	С	It is a non-metal.									
	D	It reacts with water to form hydrogen.									
	Your an	swer	[1]								
11	A stude	nt is testing sodium carbonate solution.									
		ds barium chloride solution followed by excess dilute hydrochloric acid. If these observations would not be seen?									
	Α	Colourless solution at the end									
	В	Gas bubbles when the dilute acid is added									
	С	White precipitate formed when the barium chloride solution is added									
	D	White precipitate formed when the dilute acid is added									
	Your an	swer	[1]								

12 A student reacts some metals with different salt solutions and records her results.

She places a tick (\checkmark) in her results table if she sees a chemical change and a cross (X) if there is no reaction.

Some of the boxes are blanked out.

	Magnesium chloride	Silver nitrate	Copper(II) sulfate	Iron(II) sulfate
Magnesium		✓	√	✓
Silver	Х		Х	Х
Copper	Х	√		Х
Iron	Х	√	√	

Which metal has the **least** tendency to form a positive ion?

Α	Copper
---	--------

- В Iron
- **C** Magnesium

D	Silver			
Your ans	wer			[1]

Total Marks for Question Set 1: 12

Resource Materials

The Periodic Table of the Elements

0)	18 2 He hellum 4.0	10 Ne	18 Ar argon 39.9	36	۲	83.8	54	Xenox	131.3	98	R	radon			
(7)	17	9 Fluorine 19.0	17 C1 chlorine 35.5	35	B	79.9	23	I	126.9	98	At	astatine			
(9)	16	8 O oxygen 16.0	16 S suffer 32.1	34	Se	79.0	52	Te	127.6	84	S.	polonium	116	^ د	livermorium
(2)	15	7 N nitrogen 14.0	15 P phosphorus 31.0	33	As	74.9	51	Sp	121.8	83	ö	bismuth 209.0			
(4)	41	6 C carbon 12.0	Si silion 28.1	32	Ge	72.6	20	Sn #	118.7	82	Рр	lead 207.2	114	F1	flerovium
(3)	13	5 B boron 10.8	13 A t aluminium 27.0	31	Ga	69.7	49	Indiam	114.8	81	11	thallium 204.4			
	'		12	30	Zn	65.4	48	Cd	112.4	80	Нg	mercury 200.6	112	ű	copernicium
			±	59	J	63.5	47	Ag	107.9	79	Αu	gold 197.0	111	Rg	roentgenium
			9	28	Z	58.7	46	Pd	106.4	78	చ	platinum 195.1	110	Ds	darmstadfium
			თ	27	ပိ	58.9	45	Rhodium midelium	102.9	77	'n	iridium 192.2	109	Ä	meitnerium
			œ	26	Fe	55.8	44	Ru	101.1	9/	SO	05mium 190.2	108	£	hassium
			_	25	Mn	54.9	43	Tc		75	Re	menium 186.2	107	듑	pohríum
	er nass		9	24	ပံ	52.0	42	Mo	95.9	74	>	ungsten 183.8	106	Sg	seaborgium
	Key atomic number Symbol name relative atomic mass		ro	23		50.9		QN midolo		-		tantalum 180.9	-		\neg
	ato relativ		4	22	i=	47.9	40	Zr	91.2	72	±	hafinium 178.5	104	₹	rufherfordium
'			ო	21	Sc	45.0	39	≻ ∰	88.9	i	5/-/1	lanthanoids	3	88-103	actinolds
(2)	2	Be beryllium	12 Mg magnesium 24.3	20	Ca	40.1	38	Sr	87.6	26	Ba	barium 137.3	88	Ra	radium
(£)	1 H hydrogen 1.0	3 Li lithium 6.9	11 Na sodium 23.0	19	×	39.1	37	Rb	85.5	22	္ပ	caesium 132.9	87	ት	francium

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge