
GCSE Chemistry A (Gateway Science) J248/04 Chemistry A C4-C6 and C7 (Higher Tier)

Question Set 11

- 1 This question is about life-cycle assessment.
 - (a) A car company is developing three new cars:
 - A petrol car
 - A diesel car
 - An electric car.

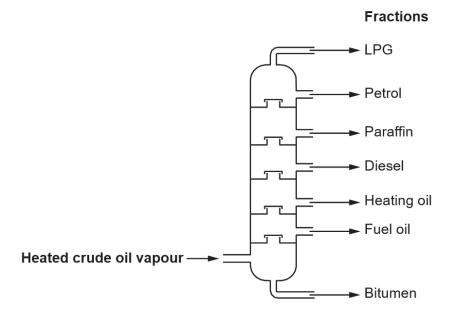
They do a life-cycle assessment of each car.

Look at the information about the life-cycle assessment of each car.

The company decides to manufacture and sell the electric car.

Explain why they make this choice.

Use the information from the life-cycle assessment to help you.


less energy is needed to make the electric car, which means less possil puels need to be extracted and burned, which destroys land and releases the greenhouse gas, CO2. The amount of global warming from electric cars is half that of petrol cars, which makes it more sustainable option for the environment. Whilst they make more acid rain than petrol & diesel, they make less pollution from ozone & water vapour, so the ozone layer is not depleted as much, all of which reduce the risk of climate change.

[3]

(b) The fuels for the petrol and diesel cars are made from crude oil.

Crude oil is separated into different parts by fractional distillation.

The diagram shows a fractionating column.

There is a temperature gradient in the tractionating column, with it being nottest at the bottom. Smaller hydrocarbons have a lower boiling point as there are weather forces between molecules. So, they condense higher up the column, separating from the vapour.

Explain why crude oil **vapour** can be separated by fractional distillation.

(c) The table shows the boiling points of molecules present in different crude oil fractions.

Molecule	Boiling point (°C)	
Α	-2	
В	125	
С	216	
D	502	

Which molecule, A, B, C or D is in the LPG fraction?

Explain your decision. The LPG fraction forms the top [2]

Where it is coolest so, it is the molecule with the lowest boiling point, which is A

[3]

(d) Car manufacturers are developing cars that are powered by hydrogen/oxygen fuel cells.

The table shows some information about a 200 km journey using an electric car and a car using a fuel cell.

Feature	Electric	Fuel cell
Refuelling time (minutes)	360	4
Cost of refuelling (£)	3.20	4.20
CO ₂ emitted (kg)	48	36
Mass of car (kg)	1550	1200

Evaluate the **advantages** and **disadvantages** of using a car powered by a fuel cell, rather than an electric car for the 200 km journey.

[3]

A fuel cell can be requelled much quicker and weighs 350kg less, which makes it a more convenient choice for travel It also emits less cog, which make it better for our environment compared to electric cars.

However it costs more to requel, which may make the public less inclined to buy it.

Ultimately, the advantages outweigh the Idisadvantages, especially considering how the fuel car is more sustainable for the environment.

Resource Materials

0

(9 7 N N 14.00 114.00 114.00 115. (2) 4 5 B B boron 10.8 13 A 1 13 A 1 13 A 1 2 27.0 31 B Ga gallum 69.7 49 In In Indiam Indiam 1114.8 81 T 1 T 1 1 14.8 E 10.4 204.4 204.4 3 The Periodic Table of the Elements 29 Cu copper 63.5 47 Ag silver 1107.9 79 T9 T9 T111 T111 Rg 9 27 27 Co cobalt 58.9 45 Rh rhodium 102.9 1r infetum 192.2 109 MR MR rhodium 192.2 109 MR MR methrerium methrerium 25 Mn nanganese 54.9 43 Tc 75 Re thenium 186.2 107 Bh bohrium Key atomic number Symbol name relative atomic mass 21 Sc Scandium scandium 45.0 39 Y yttrium 88.9 57-71 89-103 (5)

2 He hellum hellum hellum 4.0 10 10 Ne neoral 20.2 20.2 18 Ar argon 39.9 36 Xr krypton 83.8 54 Xr krypton 83.8 86 Rn radon rad

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge