

GCSE Chemistry A (Gateway Science) J248/04 Chemistry A C4-C6 and C7 (Higher Tier)

Question Set 6

1 In the Haber process nitrogen gas, N_2 , reacts with hydrogen gas.

Ammonia, NH₃, is made. The reaction is a reversible reaction.

- (a) Write the **balanced symbol** equation for the reaction. $N_2 + 3H_2 = 2NH_2$ [2]
- (b) The conditions used to make ammonia in the Haber process are:
 - a pressure of 200 atmospheres
 - a temperature of 450 °C.

The reaction is an exothermic reaction.

A company making ammonia increases the temperature used to 550 °C.

[2]

(ii) The company thinks that the increase in temperature will increase the **yield** of ammonia.

Is the company correct? Explain your answer.

No, if you increase the temperature, the equilibrium will move to the left, which is the cooler side as it is an exothermic reaction. So, less products and more reactants are made.

(c) The company wants to reduce the cost of making the ammonia. They decide to reduce the pressure used to 150 atmospheres.

Write about two disadvantages of using a lower pressure to make ammonia.

(d) Ammonia is used to make fertilisers such as ammonium sulfate.

A student makes some ammonium sulfate crystals in a laboratory.

She uses a titration method, as shown in the diagram.

She adds an indicator to ammonia solution in a conical flask. She then adds dilute sulfuric acid from a burette until the indicator changes colour.

The student then crystallises the solution. She is left with **impure** ammonium sulfate crystals.

(i) What should the student have done to obtain pure ammonium sulfate crystals? [2]

```
repeat the titration again, to find a more accurate volume of sulfuric needed to neutralise the ammonia. This ensumes no excess acid is in the final solution.
```

(ii) In industry the same reaction is used to make ammonium sulfate.

The method used is different.

Give **one** reason why the laboratory method to make ammonium sulfate is **not** used in industry.

bigger volumes are required & takes a longer time

[1]

Total Marks for Question Set 6: 10

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge

Resource Materials

(0)	18 He He 4.0	10 Neon 20.2	18 Ar 39.9	36 Kr krypton 83.8	54 Xe ^{xenon} 131.3	86 Rn ^{radon}	
(2)	1	9 19.0	17 C1 chlorine 35.5	35 Br ^{bromine} 79.9	53 I lodine 126.9	85 At _{astatine}	
(9)	16	8 0 0 16.0	16 S 32.1	34 Se selenium 79.0	52 Te tellurium 127.6	84 Po Polonium	116 Lv livermorium
(5)		7 N nitrogen 14.0	15 Phosphorus 31.0	33 As arsenic 74.9	51 Sb ^{antmony} 121.8	83 Bi ^{bismuth} 209.0	
(4)	14	6 C carbon 12.0	14 Si 28.1	32 Ge germanium 72.6	50 Sn ^{tin} 118.7	82 Pb lead 207.2	114 F1 fierovium
(3)	13	5 Baron 10.8	13 A1 aluminium 27.0	31 Ga ^{gallium} 69.7	49 In ^{indium} 114.8	81 T1 thallium 204.4	
			12	30 Zn ^{zinc} 65.4	48 Cd cadmium 112.4	80 Hg ^{mercury} 200.6	112 Cn copernicium
			5	29 Cu 63.5	47 Ag silver 107.9	79 Au ^{gold} 197.0	111 Rg roentgenium
6				28 Ni 58.7	46 Pd ^{palladum} 106.4	78 Pt platinum 195.1	110 DS ^{darmsta dilum}
თ				27 Co cobalt 58.9	45 Rh ^{thodium} 102.9	77 Ir ^{iidum} 192.2	109 Mt ^{meitnerium}
ω				26 Fe Iron 55.8	44 Ru ruthenium 101.1	76 Os ^{osmium} 190.2	108 Hs ^{hassium}
		_	7	25 Mn ^{manganese} 54.9	43 Tc technetium	75 Re ^{rhenium} 186.2	107 Bh ^{bohrium}
	ber mass		9	24 Cr chronium 52.0	42 Mo ^{molybdenum} 95.9	74 W tungsten 183.8	106 Sg ^{seaborgium}
Key mic numb Symbol e atomic			ъ	23 V vanadlum 50.9	41 Nb ^{niobium} 92.9	73 Ta tantalum 180.9	105 Db ^{dubnium}
	atc relativ		4	22 Ti ttanium 47.9	40 Zr ≊rconium 91.2	72 Hf hathium 178.5	104 Rf rutherfordium
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				21 Sc scandium 45.0	39 yttrium 88.9	57-71 lanthanoids	89—1 03 actinolds
(2)	~	Be beryllum 9.0	12 Mg 24.3	20 Ca calclum 40.1	38 Sr 87.6	56 Ba barium 137.3	88 Ra ^{rađium}
(1)	hydrogen 1.0	3 Li Bithium 6.9	11 Na ^{sodium} 23.0	19 K potassium 39.1	37 Rb ^{rubidium} 85.5	55 Cs caesium 132.9	87 Fr francium

The Periodic Table of the Elements