

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 12

1 A student has a solution of hydrochloric acid, HC*l*, and a solution of sodium hydroxide, NaOH.

He wants to make a pure, dry sample of sodium chloride.

- (a) Describe how he can do this.
 Include the apparatus he should use and his method. [4]
 (b) Write a balanced symbol equation for the reaction. [1]
- (c) The student also investigates other reactions.

The table shows the salts he can make from different starting materials.

Complete the table.

Acid used	Other starting material	Salt made	
Sulfuric acid	Copper oxide		
	Zinc carbonate	Zinc nitrate	
Hydrochloric acid		Magnesium chloride	[3

(d) What type of reaction happens when sulfuric acid reacts with copper oxide? [1]

Total Marks for Question Set 12:9

									_			_					
(0)	18 2 He ^{hellum} 4.0	10 New Ne	zu.z 18	Ar	argon 39.9	36	Kr	krypton 83.8	54	Хе	xenon 131.3	86	Rn	radon			
(2)	17	9 F fluorine	17	C1	chlorine 35.5	35	В	bromine 79.9	53	Ι	lodine 126.9	85	At	astatine			
(9)	16	oxygen	16	ŝ	sulfur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ъ	polonium	116	ר	livermorium
(5)	15	7 N nitrogen	15	ط :	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	ö	bismuth 209.0			
(4)	14	6 carbon	14	si	silicon 28.1	32	Ge	germanium 72.6	50	Sn	^{tin} 118.7	82	Pb	lead 207.2	114	F۱	flerovium
(3)	13	5 baon 100	13	AI	aluminium 27.0	31	Ga	gallium 69.7	49	Ę	indium 114.8	81	Τ1	thallium 204.4			
					12	30	Zn	zinc 65.4	48	ខ	cadmium 112.4	80	Hg	mercury 200.6	112	5	copernicium
					11	29	С	copper 63.5	47	Ag	silver 107.9	79	Au	^{gold} 197.0	111	Rg	roentgenium
	6							58.7	46	РЧ	palladium 106.4	78	ħ	platinum 195.1	110	Ds	darmsta dijum
	თ							cobalt 58.9	45	Rh	rhodium 102.9	77	ŗ	iridium 192.2	109	ğ	meitnerium
	0						Fe	lron 55.8	44	Ru	ruthenium 101.1	76	os	osmium 190.2	108	Hs	hassium
					7	25	Мn	manganese 54.9	43	ЪС	te chn etium	75	Re	rhenium 186.2	107	В	bohrium
	er nass				9	24	ບັ	chromium 52.0	42	Mo	molybdenum 95.9	74	8	tungsten 183.8	106	Sg	seaborgium
	Key atomic number Symbol _{name} relative atomic mass				5	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Ta	tantalum 180.9	105	g	dubnium
	ato relativ				4	22	Ħ	ttanium 47.9	40	Zr	zirconium 91.2	72	Ħ	hafinium 178.5	104	R	rutherfordium
					3	21	Sc	scandium 45.0	39	≻	yttrium 88.9	i	57-71	lanthanoids	00,00	89-103	actin ol ds
(2)	7	4 Be beryllium	^{3.0}	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	s	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium
(1)	hydrogen 1.0	3 Li آلthium	11	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	nubidium 85.5	55	S	caesium 132.9	87	Ŀ	francium

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge