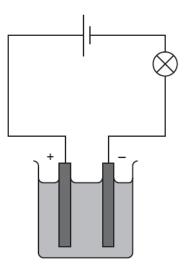

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 9

1 Sodium chloride, NaC*l*, is an ionic compound.

Sodium chloride forms a giant ionic lattice that can be represented using different models.

Look at the diagrams. They show two models of sodium chloride.


Space-filling model

Ball-and-stick model

(a) (i) A scientist thinks the ball-and-stick model should be used to model ionic compounds.

Describe two limitations of using the ball-and-stick model for ionic compounds. [2]

- (ii) Ionic compounds can also be modelled using a dot-and-cross diagram.Draw a dot and cross diagram to show the ions in sodium chloride.
- (b)* A student investigates the electrolysis of potassium bromide solution.

He notices that different products are formed at each electrode.

Explain the formation of the products during the electrolysis of potassium bromide solution.

Total Marks for Question Set 9: 10

[6]

[2]

$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		(0)	18 2 Heitum 4.0	10 Ne 20.2	18 Ar ^{argon} 39.9	36 Kr	krypton 83.8	54 Xe	_{хепоп} 131.3	86 Rn	radon	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		(2)	17	9 F fluorine 19.0	17 C1 chlorine 35.5	35 P r	bromine 79.9	53 I	lodine 126.9	85 At	astatine	
	$\label{eq:constraints} \left\{ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(9)	16	8 0 0 16.0	16 S 32.1	34 S e	selenium 79.0	52 Te	tellurium 127.6	84 Po	polonium	116 Lv livermorium
(2)(3)2Key atomic number mun 	(2) Key a romic number a romic	(5)	15	7 N nitrogen 14.0	15 Phosphorus 31.0	33 ∆ ≤	arsenic 74.9	51 Sb	antmony 121.8	83 Bi	bismuth 209.0	
(2) 2 2 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	(2) 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	(4)	14	6 C carbon 12.0	14 Si silicon 28.1	32 Ge	germanium 72.6	50 Sn	118.7	82 Pb	lead 207.2	114 F <i>l</i> flerovium
(2) Key atomic number Symbol Be before by Mg Be by Mg Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba	(2) 2 2 4 5 4 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	(3)	13	5 B ^{boron} 10.8	13 A1 aluminium 27.0	31 Ga	gallium 69.7	49 In	ndium 114.8	81 T <i>1</i>	thallium 204.4	
(2)Key atomic number Symbol and Be boyding and Boyding Bo	(2) Key atomic number Symbol Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beyamin Be beiter Be atomic number Be atomic number Be atomic number Be atomic number Bea atomic number Bea beyamin Bea atomic number Bea beyamin Bea atomic number Bea beiter Bea Bea Bea Bea Bea Bea Bea Bea				12	30 7 n	zinc 65.4	48 Cd	cadmium 112.4	80 Hg	mercury 200.6	112 Cn copernicium
(2)Key atomic number Symbol atomic number Symbol atomic number Symbol man244444902012Mg Be beylin 3012Mg Be beylin 301212Mg angresim 3124.325.32627.32838394041424344455657-718889-1038691.291.295.9137.389-1038691.2 <td>(2) Key atomic number Symbol name beyakin 9.0 12 Mig magnesia 2. 8 8 12 Mig magnesia 2. 12 Mig magnesia 2. 2. 2. 2. 3. 4. 1.2 Mig magnesia 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.</td> <td></td> <td></td> <td></td> <td>5</td> <td>28 0 1</td> <td>oopper 63.5</td> <td>47 Ag</td> <td>silver 107.9</td> <td>79 Au</td> <td>^{gold} 197.0</td> <td>111 Rg roentgenium</td>	(2) Key atomic number Symbol name beyakin 9.0 12 Mig magnesia 2. 8 8 12 Mig magnesia 2. 12 Mig magnesia 2. 2. 2. 2. 3. 4. 1.2 Mig magnesia 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.				5	28 0 1	oopper 63.5	47 Ag	silver 107.9	79 Au	^{gold} 197.0	111 Rg roentgenium
(2) Key atomic number Symbol meril Be beylium 9.0 12 Mg mg mg mg 9.0 12 Mg mg mg 12 Mg mg mg mg 12 Mg mg mg 12 Mg mg mg 12 Mg mg mg mg 12 Mg mg mg mg mg mg mg mg mg mg m	(2) Free service and the serv	6					nickel 58.7	46 Pd	palladium 106.4	78 Pt	platinum 195.1	110 Ds ^{darmstaditum}
(2) Rey atomic number Symbol atomic number Symbol name relative atomic mass at the second many symbol name relative atomic mass at the second many se	(2) Feature atomic number symbol sy	თ					cobalt 58.9	45 Rh	102.9	77 Ir	iridium 192.2	109 Mt ^{meitnerium}
(2) 2 4 Be beryttion 9.0 12 Megy mame peryttion 9.0 12 Megy mame relative atomic mass 12 Meg mame relative atomic mass 12 Meg mame relative atomic mass 12 Meg mame relative atomic mass 12 Meg mame relative atomic mass 12 Meg mame relative atomic mass 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 Meg 12 12 12 12 12 12 12 12 12 12	(2) 2 4 4 8 beryflum 9.0 12 Mg mame beryflum 9.0 12 Mg mgmeslum 9.0 12 Mg mgmeslum 24.3 3 4 7 5 6 5 7 8 8 9 9 12 Mg mgmeslum 22 20 21 22 22 24 24 20 9 9 9 9 9 9 9 9 9 9 9 9 9		0					44 Ru	101.1	76 Os	osmium 190.2	108 Hs ^{hassium}
(2) 2 4 Be beryfium 9.0 12 Mg magnesium 2.4.3 2.4.3 2.4.3 2.4.3 2.4.5 2.4.3 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.4.5 2.2 2.4.5 2.2 2.4.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	(2) Free Symbol atomic numbe Symbol atomic numbe Symbol Be beryfilum 9.0 12 Mg magnesium 9.0 12 Mg magnesium 9.0 12 Mg magnesium 9.0 12 Mg magnesium 9.0 12 Mg magnesium 24.3 3 4 5 5 5 5 5 5 5 5			_	2	25 Mn	manganese 54.9	43 Tc	techneturm	75 Re	rhenium 186.2	107 Bh ^{bohrium}
(2) 2 2 4 beryflum 9.0 12 Ng 9.0 12 12 Ng 9.0 12 12 12 24.3 3 24.3 3 24.3 3 24.3 3 24.5 7 12 12 12 12 12 24.5 3 3 4 45.0 41 41 41 41 41 41 41 41 41 41	(2) 2 2 4 Be beryfilum 9.0 Mg magnesium 24.3 24.3 24.3 24.3 24.3 24.3 38 24.3 38 24.3 38 24.5 7 7 88 88.9 93 44 40.1 12 12 12 12 12 12 12 12 12 1		ber mass		9	24 Cr	chromium 52.0	42 Mo	molybdenum 95.9	74 W	tungsten 183.8	106 Sg ^{seaborgium}
(2) 2 2 4 beryflum 9.0 12 Ng 9.0 12 12 Ng 9.0 12 12 12 24.3 3 24.3 3 24.3 3 24.3 3 24.5 7 12 12 12 12 12 12 24.5 3 3 4 4 12 12 12 12 12 24.5 3 3 4 4 12 12 12 12 12 12 12 12 12 12	(2) 2 2 Be berylluum 9.0 12 Be berylluum 9.0 12 12 12 12 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 3 24.3 24.3 27 27 27 27 27 27 27 27 27 27		Key omic numt Symbol ^{name} ve atomic		ъ	23 V	vanadium 50.9	41 Nb	92.9	73 Ta	tantalum 180.9	105 Db ^{dubnium}
(2) 2 2 4 4 8 9.0 12 12 24.3 24.3 24.3 24.3 24.3 24.3 24.3 27.6 56 87.6 56 87.6 88 88 88 88 88	(2) 2 2 4 4 8 9.0 Mg magnesium 24.3 24.3 24.3 24.3 24.3 24.3 27.6 56 56 88 88 Ration betwind betwind and betwind betwind and betwind betwind and betwind bet		ato		4	22 Ti	ttanium 47.9	40 Zr	arconium 91.2	72 Hf	hafinium 178.5	104 Rf rutherfordium
E					ę	21 SC	scandium 45.0	39 7	yttrium 88.9	57-71	lanthanoids	89—103 actinoids
C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(2)	2		12 Mg ^{magneslum} 24.3	20 0.30	calcium 40.1	38 Sr	strontum 87.6	56 Ba	barium 137.3	88 Ra
		(1)	hydrogen 1.0	3 Li Bithium 6.9	11 Na ^{sodium} 23.0	19 7	potassium 39.1	37 Rb	85.5	55 Cs	caesium 132.9	87 Fr francium

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge