

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 8

1 A teacher investigates neutralisation. She uses hydrochloric acid, HC*l*, and sodium hydroxide, NaOH.

HCl + NaOH \rightarrow NaCl + H₂O

She slowly adds $1.0\,\text{cm}^3$ portions of the hydrochloric acid to $20.0\,\text{cm}^3$ of $1.0\,\text{mol/dm}^3$ sodium hydroxide.

She records the pH until she has added an excess of acid.

Look at her results.

Volume of hydrochloric acid added (cm ³)	рН
0	12.0
1	11.8
2	11.6
3	11.4
4	11.2
5	7.0
6	3.0
7	2.8
8	2.5
9	2.3
10	2.3

(a) (i) Plot a graph of the pH value against the amount of hydrochloric acid added and draw a line of best fit.

[3]

(ii) Use your graph to estimate the **volume of hydrochloric acid** when the pH is 10.

Volume of hydrochloric acid =		[1]	
-------------------------------	--	-----	--

- (iii) What happens to the **concentration of hydroxide ions**, OH⁻, as the hydrochloric acid is added to the sodium hydroxide? [1]
- (iv) Acidic solutions contain hydrogen ions, H+. Alkaline solutions contain hydroxide ions, OH⁻.

Write the **balanced ionic** equation for neutralisation. [1]

(b)		Hydrochloric acid, HC l (aq), is a strong acid. Ethanoic acid, CH ₃ COOH (aq), is a weak acid.	
		Explain the difference between a strong and a weak acid.	[2]
(c)	(i)	Nitric acid, HNO ₃ , is another strong acid.	
		Nitric acid has a pH of 2.	
		The teacher adds enough water to reduce the concentration of the nitric acid by a factor of 100.	
		Calculate the new pH of the nitric acid.	
		pH =	[2]
	(ii)	Nitric acid, HNO ₃ , can also neutralise sodium hydroxide, NaOH.	
		Sodium nitrate, NaNO ₃ , and water are made.	
		Write a balanced symbol equation for this reaction.	[1]
	(iii)	Describe how dry sodium nitrate crystals can be made using this reaction.	[2]

Total Marks for Question Set 8: 13

(0)	18	2 He	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	Кr	krypton	03.0	54	Xe	^{xenon} 131.3	86	Rn	radon			
(2)			17	6	ш	fluorine 19.0	17	C1	chlorine 35.5	35	Br	bromine 70.0	19.9	53	Ι	lodine 126.9	85	At	astatine			
(9)			16	8	0	oxygen 16.0	16	s	sulfur 32.1	34	Se	selenium	18.0	52	Те	tellurium 127.6	84	Ро	polonium	116	Ľ	livermorium
(5)			15	7	z	nitrogen 14.0	15	٩	phosphorus 31.0	33	As	arsenic 7 A O	(4.Y	51	Sb	antimony 121.8	83	Bi	bismuth 209.0			
(4)			14	9	ပ	carbon 12.0	14	Si	silicon 28.1	32	Ge	germanium	0.21	50	Sn	tin 118.7	82	Pb	lead 207.2	114	F۱	flerovium
(3)			13	5	B	boron 10.8	13	1 H	aluminium 27.0	31	Ga	gallium	09.7	49	п	indium 114.8	81	Τl	thallium 204.4			
									12	30	Zn	zinc C.C. A	4.00	48	ро	cadmium 112.4	80	Hg	mercury 200.6	112	c	copernicium
		11	29	Cu	copper	00.0	47	Ag	silver 107.9	79	٩u	^{gold} 197.0	111	Rg	roentgenium							
		10	28	iN	nickel F.O. 7	1.00	46	Рд	palladium 106.4	78	£	platinum 195.1	110	Ds	darmstadfium							
	σ											cobalt	20.9	45	Rh	rhodium 102.9	77	ľ	iridium 192.2	109	Mt	meitnerium
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~											iron E.E. O	0.00	44	Ru	ruthenium 101.1	76	os	osmium 190.2	108	Hs	hassium
				_					7	25	Mn	manganese	04.A	43	ЦС	technetium	75	Re	thenium 186.2	107	Вh	bohrium
		)er	mass						9	24	ŗ	chromium	0.20	42	Mo	molybdenum 95.9	74	×	tungsten 183.8	106	Sg	seaborgium
	Key	omic numt Symbol	_{name} /e atomic						ŝ	23	>	vanadium	8.UC	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Db	dubnium
		ato	relativ						4	22	Ħ	ttanium	4/.Y	40	Zr	zirconium 91.2	72	Ηf	hafinium 178.5	104	Rf	rutherfordium
				•					ę	21	Sc	scandium	40.0	39	≻	yttrium 88.9		57-71	lanthanoids	00,00	89-103	actinolds
(2)	-		2	4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium	40.1	8	s	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium
(1)	-	- I	hydrogen 1.0	e		lithium 6.9	11	Na	sodium 23.0	19	×	potassium	08. I	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	F	francium

The Periodic Table of the Elements



## **Copyright Information**

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge