

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 6

1 Simple distillation can be used to separate mixtures of liquids.

A scientist is using simple distillation to separate a mixture alcohols.

Look at the table. It shows the boiling points of three alcohols.

Alcohol	Boiling point (°C)
Methanol	65
Ethanol	78
Propanol	97

(a) (i) Which alcohol will be distilled first?

Tick (\checkmark) one box.

Methanol	
Ethanol	
Propanol	

Explain your answer.

[2]

(ii) Simple distillation uses evaporation and condensation to separate mixtures.

ethanol (I) evaporation condensation ethanol (g)

Describe the change in the arrangement of particles as substances evaporate.	[1]
---	-----

- (iii) Describe the change in the **movement** of particles as substances evaporate. [1]
- (iv) The scientist wants to improve the separation of the mixture of alcohols.

Suggest a piece of equipment he could use.

Explain how this will improve the separation of the mixture of alcohols.

[2]

(b) Ethanol can be used as a biofuel. The combustion of ethanol is an **exothermic** reaction.

Explain why combustion is an exothermic reaction.

Use ideas about bond breaking and bond making in your answer.

(c) (i) Methanol is another biofuel that can be used in combustion reactions.

 $CH_{3}OH \ + \ 2O_{2} \ \rightarrow \ CO_{2} \ + \ 2H_{2}O$

Look at the table. It shows some bond energies.

Bond	Bond energy (kJ/mol)
C-H	413
O=O	498
C-O	358
C=O	805
0-Н	464

Calculate the energy transferred to break all the bonds in the reactants.

(ii) Calculate the energy transferred when all the bonds form in the products.

Energy transferred =kJ/mol [2]

(iii) Use your answers to parts (i) and (ii) to calculate the energy change for this reaction.

Energy change =kJ/mol [1]

Total Marks for Question Set 6: 12

(0)	18 2 Heitum 4.0	10 Ne 20.2	18 Ar	39.9	36	Кr	krypton 83.8	54	Xe	xenon 131.3	86	Rn	radon			
(2)	17	9 F fluorine 19.0	17 C1 C1	35.5	35	Ъ	bromine 79.9	53	Г	lodine 126.9	85	At	astatine			
(9)	16	8 oxygen 16.0	16 S	32.1	34	Se	selenium 79.0	52	Te	tellurium 127.6	84	Po	polonium	116	Ľ	livermorium
(5)	15	7 N nitrogen 14.0	15 P	31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	ï	bismuth 209.0			
(4)	14	6 carbon 12.0	14 Sillcon	28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	Pb	lead 207.2	114	F۱	flerovium
(3)	13	5 baran 10.8	13 A1	27.0	31	Ga	gallium 69.7	49	Ľ	114.8	81	Τl	thallium 204.4			
				12	30	Zn	zinc 65.4	48	B	cadmium 112.4	80	Hg	mercury 200.6	112	ບັ	copernicium
				11	29	с	copper 63.5	47	Ag	silver 107.9	79	Αu	^{gold} 197.0	111	Rg	roentgenium
				10	28	İ	nickel 58.7	46	Ъd	palladium 106.4	78	Ł	platinum 195.1	110	Ds	darmsta dijum
				6	27	ပိ	cobalt 58.9	45	Rh	102.9	77	ľ	indium 192.2	109	Mt	meitnerium
				8	26	Fe	lion 55.8	44	Ru	101.1	76	os	∞mium 190.2	108	Hs	hassium
		_		7	25	Mn	manganese 54.9	43	Ľ	technetium	75	Re	thenium 186.2	107	Вh	bohrium
	ber mass			9	24	ບັ	chromium 52.0	42	Мо	molybdenum 95.9	74	×	tungsten 183.8	106	Sg	seaborgium
	Key atomic number Symbol ^{name} relative atomic mass			5	23	>	vanadium 50.9			92.9		Ta	tantalum 180.9	105	Рр	dubnium
	ato			4	22	Ξ	ttanium 47.9	40	Zr	arconium 91.2	72	Ħ	hafinium 178.5	104	Rf	rutherfordium
				3	21	Sc	scandium 45.0	39	≻	yttrium 88.9	i	57-71	lanthanoids	007.00	89-103	actinoids
(2)	2	4 Be beryllium 9.0	12 Mg	24.3	20	Ca	calcium 40.1	38	Sr	strontium 87.6	56	Ba	barium 137.3	88	Ra	rađum
(1)	hydrogen 1.0	3 Li lithium 6.9	11 Na	23.0	19	¥	potassium 39.1	37	Rb	Rubidium 85.5	55	ငိ	caesium 132.9	87	ŗ	francium

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge