

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 3

Multiple Choice Questions

C3: Chemical Reactions

1	Mag	gnesium reacts with copper oxide.										
	Mag	gnesium oxide and copper are mad	le.									
	ma	gnesium + copper oxide $ ightarrow$ ma	agnesium oxide + copper									
	Whi	ich substance is the reducing ager	nt?									
	Α	Copper										
	В	Copper oxide										
	С	Magnesium										
	D	Magnesium oxide										
	You	ır answer		[1]								
2	Avo	ogadro's constant has a value of 6.0	02×10^{23} .									
	How many oxygen atoms are in 0.25 moles of oxygen molecules?											
	Α	1.204 × 10 ²⁴										
	В	1.505 × 10 ²³										
	С	3.010×10^{23}										
	D	6.020×10^{23}										
	You	ur answer		[1]								
3	Met	thane burns in oxygen to form carbo	on dioxide and water.									
	CH	$_4$ + $_{2O_2} \rightarrow _{CO_2}$ + $_{2H_2O}$										
	Cald	culate the amount of carbon dioxide	e made when 6.4 g of methane is burnt.									
	Α	2.8 g										
	В	4.4 g										
	С	14.4 g										
	D	17.6 g										
	You	ır answer		[1]								

4	During the electrolysis of mo	Iten lead bromide	, bromine is made	at the anode.
---	-------------------------------	-------------------	-------------------	---------------

Which half equation shows that bromine is made at the anode?

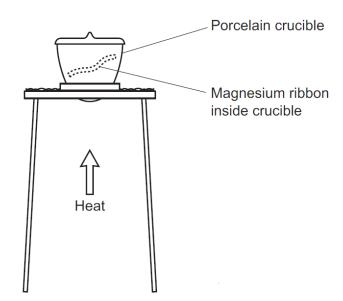
- $\mathbf{A} \quad 2\mathrm{Br}^{-} \longrightarrow \mathrm{Br}_{2} + 2\mathrm{e}^{-}$
- $\mathbf{B} \quad \mathrm{Br}^- \to \mathrm{Br} + \mathrm{e}^-$
- C Br₂ + 2e⁻ \rightarrow 2Br⁻
- $\mathbf{D} \quad 2\mathrm{Br}^{-} \longrightarrow \mathrm{Br}_{2} \ \ 2\mathrm{e}^{-}$

[1]

- 5 What is the name of the gas made when magnesium reacts with sulfuric acid?
 - A Carbon dioxide
 - **B** Carbon monoxide
 - C Hydrogen
 - **D** Oxygen

[1]

- 6 Which equation represents **neutralisation**?
 - $A \quad 4H^+ \longrightarrow 2H_2$
 - $\mathbf{B} \quad \mathrm{H_2O} \, \longrightarrow \, 2\mathrm{H^+} \, + \, \mathrm{O^{2-}}$
 - $C H^+ + OH^- \longrightarrow H_2O$
 - $\textbf{D} \quad \textbf{O}_2 \ + \ \textbf{H}_2 \ \longrightarrow \ \textbf{H}_2 \textbf{O} \ + \ \textbf{O}^{2-}$


[1]

	CH	$_4$ + $_2O_2$ \longrightarrow $_2O_2$ + $_2O_2$	
	Whi	ch substance is the oxidising agent in this reaction?	
	Α	CH ₄	
	В	CO ₂	
	С	H_2O	
	D	O_2	
	You	r answer	[1]
8	Wha	at is the activation energy for a reaction?	
	Α	The difference between the energy of the reactants and the products	
	В	The energy needed for a reaction to start	
	С	The energy of the products	
	D	The energy of the starting materials	
	You	r answer	[1]
9	Whi	ch is the best explanation of a concentrated acid?	
	Α	The acid is completely ionised in solution in water.	
	В	The acid is partially ionised in solution in water.	
	С	There is a large amount of acid and a small amount of water.	
	D	There is a large amount of water and a small amount of acid.	
	You	r answer	[1]

7

Look at the equation.

10 Magnesium is heated in a crucible.

The mass of the crucible and magnesium increases.

Which statement is the **best** explanation for this?

- A Oxygen is given off.
- **B** The magnesium melts.
- **C** The magnesium is oxidised to magnesium oxide.
- **D** The magnesium reacts to make magnesium carbonate.

Your answer [1]

11 The equation shows a reaction that involves both oxidation and reduction.

$$Fe_2O_3 + 2Al \longrightarrow Al_2O_3 + 2Fe$$

Which statement about **reduction** is correct?

- A The gain of oxygen and the gain of electrons by a substance
- B The gain of oxygen and the loss of electrons by a substance
- C The loss of oxygen and the gain of electrons by a substance
- **D** The loss of oxygen and the loss of electrons by a substance

Your answer [1]

12 A student measures the pH of an acid and an alkali.

He adds magnesium metal to the acid and to the alkali.

What results should he expect?

	Ad	cid	Alkali						
	рН	Reaction with magnesium	рН	Reaction with magnesium					
Α	below 7	no reaction	above 7	magnesium fizzes					
В	below 7	magnesium fizzes	above 7	no reaction					
С	above 7	magnesium fizzes	above 7	no reaction					
D	above 7	no reaction	below 7	magnesium fizzes					

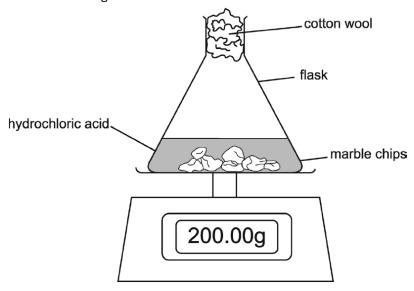
	You	ur answer	[1]
13	Dur	ing the electrolysis of molten potassium chloride, what is made at the cathode?	
	Α	Chlorine	
	В	Hydrogen	
	С	Potassium	
	D	Potassium hydroxide	
	You	ir answer	[1]

14 Which of these shows the balanced symbol equation for the reaction between potassium and chlorine to make potassium chloride?

A
$$K + Cl_2 \rightarrow KCl_2$$

B P+C
$$l_2$$
 \rightarrow PC l_2

c
$$2K + Cl_2 \rightarrow 2KCl$$


D
$$2P + Cl_2 \rightarrow 2PCl$$

Your answer [1]

	Whi	ich equation shows the ionic equation for neutralisation?											
	A B	$HNO_3 + KOH \rightarrow KNO_3 + H_2O$ $H^+ + OH^- \rightarrow H_2O$											
	С	$NO_3^- + K^+ \rightarrow KNO_3$											
	D	$H^+ + NO_3^- \rightarrow HNO_3$											
	You	r answer	[1]										
16	A student investigates some acids.												
	She	She has a solution of hydrochloric acid of concentration 0.01 mol/dm ³ .											
	This	s solution has a pH of 2.											
		e increases the concentration of hydrochloric acid from 0.01 mol/dm³ to mol/dm³.											
	What is the pH of this new solution?												
	Α	0											
	В	1											
	С	3											
	D	12											
	You	ir answer	[1]										
17	Wha	at is the best explanation of what is meant by a strong acid?											
	Α	There is a large amount of acid and a small amount of water.											
	В	There is a small amount of acid and a large amount of water.											
	С	The acid is completely ionised in solution in water.											
	D	The acid is partially ionised in solution in water.											
	You	ir answer	[1]										

15 A student neutralises nitric acid with potassium hydroxide solution.

18 Look at the diagram.

It shows how the reaction between hydrochloric acid and marble chips (calcium carbonate) can be monitored.

The reading on the balance **decreases** during the reaction.

Which statement is the **best** explanation?

- A Acid escapes from the flask.
- **B** Carbon dioxide gas is made which leaves the flask.
- C Hydrogen gas is made which leaves the flask.
- **D** The temperature in the laboratory changes.

Your answer	
	[1]

Total Marks for Question Set 3: 18

The Periodic Table of the Elements

0)	18	2 H	hellum 4.0	10	Ne	20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	54	Xe	xenon 131.3	98	R	radon			
(7)							\vdash		chlorine 35.5												
(9)			16	8	0	oxygen 16.0	16	S	suffur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	9 8	polonium	116	۲	Evermorium
(2)			15	7	z	nitrogen 14.0	15	۵.	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	anfmony 121.8	83	ē	bismuth 209.0			
(4)			14	9	ပ	carbon 12.0	14	Si	slicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	F1	flerovium
(3)			13	2	В	boron 10.8	13	PΙ	aluminium 27.0	31	Ga	gallium 69.7	49	드	indium 114.8	81	11	thallium 204.4			
			·						12	30	Zn	zino 65.4	48	පි	cadmium 112.4	80	Нg	mercury 200.6	112	5	copernicium
									7	29	D C	ооррег 63.5	47	Ag	silver 107.9	79	Αu	gold 197.0	111	Rg	roentgenium
									10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	Ŧ	platinum 195.1	110	Ds	darmstadfium
									6	27	ပိ	cobalt 58.9	45	몺	modium 102.9	77	I	iridium 192.2	109	Mt	meitnerium
									œ	26	Fe	lron 55.8	44	Ru	ruthenium 101.1	9/	SO.	08mium 190.2	108	Hs	hassium
									7	25	Mn	manganese 54.9	43	ည	technetium	75	Re	menium 186.2	107	В	bohrium
		Jer.	mass						9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium
	Key	atomic number Symbol	name relative atomic mass						2	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Op	dubnium
		ato	relativ						4	22	F	ftanium 47.9	40	Zr	arconium 91.2	72	Ξ	hafinium 178.5	104	ጟ	rufherfordium
•									က	21	သွ	scandium 45.0	39	>	yttrium 88.9	i	57-71	lanthanoids	-	89-103	actinoids
(2)	_		2	4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	S	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium
Ð	-	← I	hydrogen 1.0	က	<u></u>	lithium 6.9	11	Na	sodium 23.0	19	¥	potassium 39.1	37	Вb	rubidium 85.5	55	S	caesium 132.9	87	ェ	francium

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge