

## GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

## Question Set 2

**Multiple Choice Questions** 

C2: Elements, Compounds and Mixtures

Sodium is an element that can be found in the Periodic Table.

A sodium atom contains 11 electrons.

Which statement about sodium is true?

- A Sodium is in Group 2 of the Periodic Table.
- **B** Sodium is in Period 2 of the Periodic Table.
- **C** Sodium is in Period 3 of the Periodic Table.
- **D** Sodium is in Group 3 of the Periodic Table.

Your answer

[1]

Carbon dioxide exists as a simple molecule.

Why do simple molecules have low boiling points?

- **A** Simple molecules have weak covalent bonds between atoms.
- **B** Simple molecules have weak intermolecular forces between atoms.
- **C** Simple molecules have weak ionic bonds between the molecules.
- **D** Simple molecules have weak intermolecular forces between the molecules.

Your answer

Mendeleev's arrangement of elements led to our modern Periodic Table.

How did Mendeleev arrange the elements in his Periodic Table?

- A In order of decreasing atomic mass and similar physical properties.
- **B** In order of increasing atomic number and similar physical properties.
- **C** In order of decreasing atomic number and similar chemical properties.
- **D** In order of increasing atomic mass and similar chemical properties.

Your answer

[1]

[1]

3

 $\rm R_{\rm f}$  values are used to compare the different spots on a chromatogram.

What is the formula used to calculate an  ${\rm R}_{\rm f}$  value?

|     | I                                                                                                         |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Α   | $R_{f} = \frac{\text{distance travelled by solvent}}{\text{distance travelled by substance}}$             |  |  |  |  |  |
| в   | $R_{f} = \frac{\text{distance travelled by substance}}{\text{distance travelled by solvent}}$             |  |  |  |  |  |
| С   | $R_{f} = \frac{\text{distance travelled by stationary phase}}{\text{distance travelled by mobile phase}}$ |  |  |  |  |  |
| D   | $R_{f} = \frac{\text{distance travelled by solvent}}{\text{distance travelled by mobile phase}}$          |  |  |  |  |  |
| Υοι | ur answer                                                                                                 |  |  |  |  |  |
| Ca  | bon can form different <b>allotropes</b> .                                                                |  |  |  |  |  |
| Wh  | ich of these are allotropes of carbon?                                                                    |  |  |  |  |  |
| Α   | Diamond, graphite, graphene.                                                                              |  |  |  |  |  |
| В   | Diamond, granite, graphite.                                                                               |  |  |  |  |  |
| С   | Fullerene, graphene, ethene.                                                                              |  |  |  |  |  |
| D   | Granite, graphite, graphene.                                                                              |  |  |  |  |  |
| Υοι | ur answer                                                                                                 |  |  |  |  |  |
| Wh  | What is the electronic structure of sulfur?                                                               |  |  |  |  |  |
| Α   | 2                                                                                                         |  |  |  |  |  |
| _   |                                                                                                           |  |  |  |  |  |

- - 2, 6 В
  - С 2, 8, 6
  - 2, 8, 8, 6 D

Your answer

[1]

[1]

The melting point of bromine is -7 °C.

The boiling point of bromine is 59 °C.

What state would bromine be at room temperature?

- A Aqueous
- B Gas
- **C** Liquid
- D Solid

Your answer

[1]

8

7

Paper chromatography can be used to separate the colours in ink.

Water is the solvent used to separate the colours in water soluble ink.

What name is given to the water used in paper chromatography?

- A Absorption phase
- B Liquid phase
- C Mobile phase
- D Stationary phase

Your answer

9

What is the amount, in mol, of 15g of carbonate ions, CO<sub>3</sub><sup>2-</sup>?

- **A** 0.18
- **B** 0.25
- **C** 4.0
- **D** 5.6

Your answer

[1]

| 10 | Whi | ch of these substances has a giant covalent structure?                                        |     |
|----|-----|-----------------------------------------------------------------------------------------------|-----|
|    | Α   | Carbon dioxide                                                                                |     |
|    | В   | Magnesium oxide                                                                               |     |
|    | С   | Sulfur dioxide                                                                                |     |
|    | D   | Silicon dioxide                                                                               |     |
|    | You | r answer                                                                                      | [1] |
| 11 | Whi | ch statement about nanoparticulate materials is <b>not</b> correct?                           |     |
|    | Α   | Nanoparticles are much smaller than atoms.                                                    |     |
|    | В   | Nanoparticulate materials can be used as catalysts.                                           |     |
|    | С   | Nanoparticulate materials have an extremely large surface area to volume ratio.               |     |
|    | D   | There are possible risks when using nanoparticulate materials which are difficult to predict. |     |
|    |     |                                                                                               |     |

Your answer

| 12 | Ethanol is a liquid at room temperature. It has a low melting point and boiling |
|----|---------------------------------------------------------------------------------|
|    | point.                                                                          |

Why?

- **A** Ethanol is an ionic compound.
- **B** The forces of attraction between ethanol molecules are strong.
- **C** The forces of attraction between ethanol molecules are weak.
- **D** There are no forces of attraction between ethanol molecules.

Your answer

13

- Which statement about **covalent** bonding is true?
  - A Electrons are transferred from one atom to another.
  - **B** Electrons are delocalised.
  - **C** Electrons are shared between atoms.
  - **D** lons are formed.

Your answer

[1]

[1]

[1]

Which statement correctly describes a pure substance?

- A Consists of just one element or compound
- **B** Has a low melting point
- **C** Is a mixture of two or more substances
- **D** Melts over a range of temperatures

Your answer

| - 4 |  |
|-----|--|
| 1   |  |
|     |  |
|     |  |

**15** A student separates a dye using thin layer chromatography.

She puts a thin layer of solid alumina onto a glass plate. She puts the dye on the pencil line. She puts the glass plate into a tank containing water.

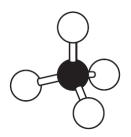
Which of the following is the stationary phase?

- **A** Alumina
- **B** Glass
- C Pencil line
- D Water

Your answer

16

What is the approximate size of a nanoparticle?


- **A** 0.07 nm
- **B** 0.40 nm
- **C** 50 nm
- **D** 1000 nm

Your answer

[1]

[1]

Look at the diagram of a methane molecule.



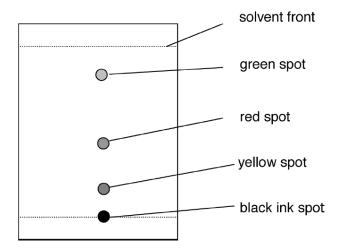
Which statement about methane is correct?

- A Electrons are transferred from hydrogen atoms to carbon atoms.
- **B** The covalent bonds in methane are weak.
- **C** The force of attraction between methane molecules is weak.
- **D** The ionic bonds between carbon and hydrogen are very strong.

Your answer

[1]

A student separates the colours in a sample of black ink using paper chromatography.


- He puts a spot of black ink onto a piece of filter paper.
- He dips the filter paper into ethanol in a beaker.

What phase describes ethanol in this experiment?

- A Gas phase
- B Mobile phase
- C Solid phase
- D Stationary phase

Your answer

[1]



What is the  $R_{\rm f}$  value of the green spot? Use a ruler to help you.

- **A** 0.17
- **B** 0.42
- **C** 0.83
- **D** 1.00

Your answer

[1]

20

The molecular formula of decene is  $C_{10}H_{20.}$ 

What is the empirical formula of decene?

- A CH<sub>2</sub>
- **B** C<sub>2</sub>H<sub>4</sub>
- **C** C<sub>5</sub>H<sub>10</sub>
- D C<sub>20</sub>H<sub>40</sub>

Your answer

A student tests the conductivity of an ionic compound.

Which row in the table shows the correct results?

| _ | Solid ionic compound | lonic compound<br>dissolved in water | Molten ionic<br>compound |  |  |  |  |  |
|---|----------------------|--------------------------------------|--------------------------|--|--|--|--|--|
| Α | conducts             | conducts                             | does not conduct         |  |  |  |  |  |
| В | conducts             | conducts                             | conducts                 |  |  |  |  |  |
| С | does not conduct     | does not conduct                     | conducts                 |  |  |  |  |  |
| D | does not conduct     | conducts                             | conducts                 |  |  |  |  |  |

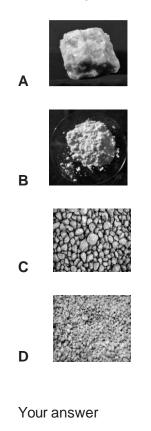
Your answer

[1]

Crude oil can be separated in the laboratory into fractions which have different boiling points.

Look at the table. It shows possible relationships between:

- boiling point
- number of carbon atoms in the molecule
- size of intermolecular forces.


Which letter shows the correct relationship?

|   | Boiling point | Number of carbon atoms in the molecule | Size of intermolecular<br>forces |  |  |  |  |  |
|---|---------------|----------------------------------------|----------------------------------|--|--|--|--|--|
| Α | high          | less than 20                           | large                            |  |  |  |  |  |
| В | high          | more than 50                           | small                            |  |  |  |  |  |
| С | low           | less than 20                           | small                            |  |  |  |  |  |
| D | low           | more than 50                           | large                            |  |  |  |  |  |

Your answer

Look at the diagrams.

Which diagram shows a solid with the largest surface area to volume ratio?



[1]

## **Total Marks for Question Set 2: 23**

| $ \left( \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0) | <b>18</b><br>2 <b>He</b><br>4.0                           | 10<br><b>Ne</b><br>20.2                    | 18<br>Ar<br>argon<br>30.0              | 36 | Кr | krypton<br>83.8   | 54 | Xe  | 131.3       | 86 | Rn    | radon                    |        |         |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------|--------------------------------------------|----------------------------------------|----|----|-------------------|----|-----|-------------|----|-------|--------------------------|--------|---------|---------------|
| $ \left( \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2) | 17                                                        | 9<br>F<br>fluorine<br>19.0                 | 17<br>C1<br>chlorine<br>35.5           | 35 | Br | bromine<br>79.9   | 53 | I   | 126.9       | 85 | At    | astatine                 |        |         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (9) | 16                                                        | 8<br><b>O</b><br><sup>oxygen</sup><br>16.0 | 16<br><b>S</b><br>suftur<br>20.1       | 34 | Se | selenium<br>79.0  | 52 | Te  | 127.6       | 84 | Ро    | polonium                 | 116    | ר<br>י  | li vermori um |
| (2)<br>Key<br>atomic number<br>Symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>symbol<br>sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (5) | 15                                                        | 7<br>N<br>nitrogen<br>14.0                 | 15<br>P<br>phosphorus<br>31.0          | 33 | As | arsenic<br>74.9   | 51 | Sb  | 121.8       | 83 | Bi    | bismuth<br>209.0         |        |         |               |
| (2)<br>2<br>2<br>2<br>3<br>4<br>4<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4) | 14                                                        | 6<br>C<br>carbon<br>12.0                   | 14<br>Si<br>Silicon                    | 32 | Ge | germanium<br>72.6 | 50 | Sn  | 118.7       | 82 | Pb    | lead<br>207.2            | 114    | F١      | flerovium     |
| (2)<br>2<br>3<br>4<br>5<br>5<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3) | 13                                                        | 5<br>B<br>boron<br>10.8                    | 13<br>A1<br><sup>alumium</sup><br>27.0 | 31 | Ga | gallium<br>69.7   | 49 | L . | 114.8       | 81 | Τ1    | thallium<br>204.4        |        |         |               |
| (2)<br>Key<br>atomic number<br>Symbol<br>Be<br>beyamine<br>Be<br>beyamine<br>Be<br>beyamine<br>Symbol<br>and<br>and<br>relative atomic mass<br>Be<br>beyamine<br>Be<br>atomic number<br>Symbol<br>and<br>relative atomic mass<br>Be<br>beyamine<br>Be<br>atomic mass<br>Be<br>atomic mass<br>atomic mass<br>Be<br>atomic mass<br>atomic mass<br>Be<br>atomic mass<br>atomic m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                           |                                            | 5                                      | 30 | Zn | zinc<br>65.4      | 48 | Cd  | 112.4       | 80 | Hg    | mercury<br>200.6         | 112    | ບົ      | copernicium   |
| (2)<br>Key<br>atomic number<br>Symbol<br>mane<br>powdan<br>9.0<br>12<br>Mg<br>magnetic<br>9.0<br>12<br>Mg<br>magnetic<br>9.0<br>12<br>Mg<br>magnetic<br>9.0<br>12<br>Mg<br>magnetic<br>9.0<br>12<br>Mg<br>magnetic<br>9.0<br>12<br>Mg<br>magnetic<br>9.0<br>12<br>Mg<br>magnetic<br>9.0<br>12<br>Mg<br>magnetic<br>9.0<br>12<br>Mg<br>magnetic<br>12<br>Mg<br>magnetic<br>12<br>Mg<br>magnetic<br>12<br>Mg<br>magnetic<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                                                           |                                            | ÷                                      | 29 | Cu | copper<br>63.5    | 47 | Ag  | 107.9       | 79 | Au    | <sup>gold</sup><br>197.0 | 111    | Rg      | roentgenium   |
| (2)<br>Frequencies and the set of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                           |                                            | ç                                      | 28 | ïZ | nickel<br>58.7    | 46 | Pd  | 106.4       | 78 | Ł     | platinum<br>195.1        | 110    | Ds      | darmsta dijum |
| (2)<br>Fedative atomic number<br>Symbol<br>atomic number<br>Symbol<br>mame<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum<br>pervilum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                                                           |                                            | d                                      | 27 | ပိ | cobalt<br>58.9    | 45 | Rh  | 102.9       | 77 | ŗ     | iridium<br>192.2         | 109    | Ĕ       | meitnerium    |
| (2)<br><b>Felative atomic number</b><br><b>Symbol</b><br>atomic number<br><b>Symbol</b><br>atomic number<br><b>Symbol</b><br>atomic number<br><b>Symbol</b><br>name<br>relative atomic mass<br><b>He</b><br><b>Be</b><br><b>beywbol</b><br>atomic nass<br><b>Ca</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b><br><b>Solution</b> |     |                                                           |                                            | α                                      | 26 | Fe | lron<br>55.8      | 44 | Ru  | 101.1       | 76 | Os    | osmium<br>190.2          | 108    | Hs      | hassium       |
| (2)<br>2<br>4<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>beywind<br>bewind<br>beywind<br>beywind<br>beywind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewind<br>bewin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                           | _                                          | ٢                                      | 25 | Mn | manganese<br>54.9 | 43 | Tc  | Recarlentin | 75 | Re    | thenium<br>186.2         | 107    | R<br>B  | bohrium       |
| (2)<br>2<br>2<br>8<br>9.0<br>9.0<br>9.0<br>12<br>Mg<br>9.0<br>12<br>Mg<br>9.0<br>12<br>Mg<br>9.0<br>12<br>12<br>Mg<br>12<br>12<br>Mg<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | ber<br>mass                                               |                                            | u                                      | 24 | ŗ  | chromium<br>52.0  | 42 | Мо  | 95.9        | 74 | ×     | tungsten<br>183.8        | 106    | Sg      | seaborgium    |
| (2)<br>2<br>2<br>8<br>9.0<br>9.0<br>9.0<br>12<br>Mg<br>9.0<br>12<br>Mg<br>9.0<br>12<br>Mg<br>9.0<br>12<br>12<br>Mg<br>12<br>12<br>Mg<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Key<br>mic numt<br>Symbol<br><sup>name</sup><br>/e atomic |                                            | u                                      | 23 | >  | vanadium<br>50.9  | 41 | Nb  | 92.9        | 73 | Та    | tantalum<br>180.9        | 105    | Db<br>D | dubnium       |
| (2)<br>2<br>2<br>8<br>9<br>9<br>9<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | ato                                                       |                                            | -                                      | 22 | Ξ  | ttanium<br>47.9   | 40 | Zr  | 91.2        | 72 | Ħ     | hafinium<br>178.5        | 104    | Rf      | rutherfordium |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                                           |                                            | ~                                      | 21 | Sc | scandium<br>45.0  | 39 | ۲.  | 88.9        |    | 57-71 | lanthanoids              | 00 100 | 03-103  | actinolds     |
| (1)<br>H H H Hydrogen<br>Hydrogen<br>1.0<br>3.3<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2) | 2                                                         | 4<br>Be<br>beryllium<br>9.0                | 12<br>Mg<br>24.3                       | 20 | Ca | calcium<br>40.1   | 38 | Sr  | 87.6        | 56 | Ba    | barium<br>137.3          | 88     | Ra      | radium        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1) | 1<br>hydrogen<br>1.0                                      | 3<br>Li<br>lithium<br>6.9                  | 11<br>80dium<br>23.0                   | 19 | ¥  | potassium<br>39.1 | 37 | Rb  | 85.5        | 55 | S     | caesium<br>132.9         | 87     | Ľ       | francium      |

The Periodic Table of the Elements



## **Copyright Information**

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge