

GCSE Chemistry A (Gateway Science)

J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 1

Multiple Choice Questions

C1: Particles

1 The atomic radius of a helium atom is 0.031 nm.

What is the atomic radius of a helium atom in standard form?

- **A** 3.1×10^{-1}
- **B** 3.1 × 10⁻²
- **C** 3.1 × 10⁻³
- **D** 3.1×10^{-4}

Your answer

[1]

[1]

2 Niels Bohr was involved in the development of the atomic model.

Which of these statements describes his work?

- A He developed the idea of a nuclear atom.
- **B** He developed the plum-pudding model of the atom.
- **C** He stated that atoms were like tiny solid balls.
- **D** He stated that electrons exist in fixed energy levels.

Your answer

3 What is the best description of the particles in a liquid?

	Distance between particles	Movement of particles							
Α	close together	in continuous random motion							
в	close together	vibrating about a fixed point							
С	far apart	in continuous random motion							
D	far apart	vibrating about a fixed point							

Your answer

[1]

4 What is the approximate size of an atom?

- **A** 3×10^{-1} metres
- **B** 3×10^{-5} metres
- **C** 3×10^{-9} metres
- **D** 3×10^{-13} metres

Your answer

[1]

Total Marks for Question Set 1:4

$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0)	18 2 He 4.0	10 Ne 20.2	18 Ar argon 30.0	36	Кr	krypton 83.8	54	Xe	131.3	86	Rn	radon			
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)	17	9 F fluorine 19.0	17 C1 chlorine 35.5	35	Br	bromine 79.9	53	I	126.9	85	At	astatine			
	(9)	16	8 O ^{oxygen} 16.0	16 S suftur 20.1	34	Se	selenium 79.0	52	Te	127.6	84	Ро	polonium	116	ר י	li vermori um
(2) Key atomic number Symbol sy	(5)	15	7 N nitrogen 14.0	15 P phosphorus 31.0	33	As	arsenic 74.9	51	Sb	121.8	83	Bi	bismuth 209.0			
(2) 2 2 2 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(4)	14	6 C carbon 12.0	14 Si Silicon	32	Ge	germanium 72.6	50	Sn	118.7	82	Pb	lead 207.2	114	F١	flerovium
(2) 2 3 4 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	(3)	13	5 B boron 10.8	13 A1 ^{alumium} 27.0	31	Ga	gallium 69.7	49	L .	114.8	81	Τ1	thallium 204.4			
(2) Key atomic number Symbol Be beyamine Be beyamine Be beyamine Symbol and and relative atomic mass Be beyamine Be atomic number Symbol and relative atomic mass Be beyamine Be atomic mass Be atomic mass atomic mass Be atomic mass atomic mass Be atomic mass atomic m				5	30	Zn	zinc 65.4	48	Cd	112.4	80	Hg	mercury 200.6	112	ບົ	copernicium
(2) Key atomic number Symbol mane powdan 9.0 12 Mg magnetic 9.0 12 Mg magnetic 9.0 12 Mg magnetic 9.0 12 Mg magnetic 9.0 12 Mg magnetic 9.0 12 Mg magnetic 9.0 12 Mg magnetic 9.0 12 Mg magnetic 9.0 12 Mg magnetic 12 Mg magnetic 12 Mg magnetic 12 Mg magnetic 12 12 12 12 12 12 12 12 12 12				÷	29	Cu	copper 63.5	47	Ag	107.9	79	Au	^{gold} 197.0	111	Rg	roentgenium
(2) Frequencies and the set of t				ç	28	ïZ	nickel 58.7	46	Pd	106.4	78	Ł	platinum 195.1	110	Ds	darmsta dijum
(2) Fedative atomic number Symbol atomic number Symbol mame pervilum				d	27	ပိ	cobalt 58.9	45	Rh	102.9	77	ŗ	iridium 192.2	109	Ĕ	meitnerium
(2) Felative atomic number Symbol atomic number Symbol atomic number Symbol atomic number Symbol name relative atomic mass He Be beywbol atomic nass Ca Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution				α	26	Fe	lron 55.8	44	Ru	101.1	76	Os	osmium 190.2	108	Hs	hassium
(2) 2 4 beywind bewind beywind bewin			_	٢	25	Mn	manganese 54.9	43	Tc	Recarlentin	75	Re	thenium 186.2	107	R B	bohrium
(2) 2 2 8 9.0 9.0 9.0 12 Mg 9.0 12 Mg 9.0 12 Mg 9.0 12 12 Mg 12 12 Mg 12 12 12 12 12 12 12 12 12 12		ber mass		u	24	ŗ	chromium 52.0	42	Мо	95.9	74	×	tungsten 183.8	106	Sg	seaborgium
(2) 2 2 8 9.0 9.0 9.0 12 Mg 9.0 12 Mg 9.0 12 Mg 9.0 12 12 Mg 12 12 Mg 12 12 12 12 12 12 12 12 12 12		Key mic numt Symbol ^{name} /e atomic		u	23	>	vanadium 50.9	41	Nb	92.9	73	Та	tantalum 180.9	105	Db D	dubnium
(2) 2 2 8 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0		ato		-	22	Ξ	ttanium 47.9	40	Zr	91.2	72	Ħ	hafinium 178.5	104	Rf	rutherfordium
				~	21	Sc	scandium 45.0	39	۲.	88.9		57-71	lanthanoids	00 100	03-103	actinolds
(1) H H H Hydrogen Hydrogen 1.0 3.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	(2)	2	4 Be beryllium 9.0	12 Mg DA 3	20	Ca	calcium 40.1	38	Sr	87.6	56	Ba	barium 137.3	88	Ra	radium
	(1)	1 hydrogen 1.0	3 Li lithium 6.9	11 80dium 23.0	19	¥	potassium 39.1	37	Rb	85.5	55	S	caesium 132.9	87	Ľ	francium

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge