

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 30

1 Look at the diagrams of sodium chloride and water.

sodium chloride

water

(a) Sodium chloride has a melting point of 801°C.

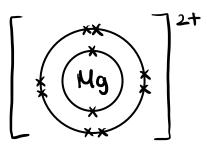
Use the diagram of sodium chloride to explain why.

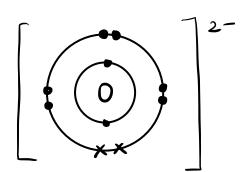
Strong electrostatic force of attraction between [2] ions must be broken to melt sodium chloride.

(b) Water has a low melting point and boiling point.

Explain why.

Weak intermolecular forces between molecules [2] are easily broken.


(c) Magnesium oxide has a similar structure to sodium chloride.


Draw 'dot and cross' diagrams to show the ionic bonding in magnesium oxide.

- · Include the charges on the ions.
- The electronic structure of magnesium is 2.8.2.
- The electronic structure of oxygen is 2.6.

[3]

Total Marks for Question Set 30:7

The Periodic Table of the Elements

																			_		
0	18	2 He	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	궃	krypton 83.8	54	Xe	xenon 131.3	98	R	radon			
(-)			17	6	щ	fluorine 19.0	17	CI	chlorine 35.5	35	Ā	bromine 79.9	53	Т	lodine 126.9	82	Αt	astatine			
(9)			16	8	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	Te	tellurium 127.6	84	Ьо	polonium	116	^	livermorium
(2)			15	7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	ö	bismuth 209.0			
(4)			14	9	ပ	carbon 12.0	14	Si	slicon 28.1	32	ge	germanium 72.6	20	Sn	th 118.7	82	Pb	lead 207.2	114	F1	flerovium
(3)			13	2	В	baran 10.8	13	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	드	indium 114.8	81	11	thallium 204.4			
									12	30	Zu	zinc 65.4	48	ၓ	cadmium 112.4	80	Hg	mercury 200.6	112	ပ	copernicium
									11	29	చె	oopper 63.5	47	Ag	silver 107.9	79	Αn	gold 197.0	111	Rg	roentgenium
									10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	풉	platinum 195.1	110	Ds	darmstadfium
									6	27	ပိ	oobalt 58.9	45	몺	modium 102.9	77	i	iridium 192.2	109	ğ	meitnerium
									8	26	Fe	lion 55.8	44	R	101.1	9/	os	osmium 190.2	108	£	hassium
									7	25	Mn	manganese 54.9	43	ည	technetium	75	Re	thenium 186.2	107	뮵	bohrium
		er	mass						9	24	ပ်	chromium 52.0	42	Wo	molybdenum 95.9	74	>	ungsten 183.8	106	Sg	seaborgium
	Key	tomic number	relative atomic mass						2	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	op O	dubnium
		atc	relativ						4	22	j	fitanium 47.9	40	Zr	arconium 91.2	72		hafinium 178.5	104	ጟ	rufherfordium
									က	21	သွင	scandium 45.0	39	>	yttrium 88.9		57-71	lanthanoids	00,00	89-103	actinoids
(2)			2	4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Sr	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium
Ð	1	← I	hydrogen 1.0	3	:=	lithium 6.9	11	Na	sodium 23.0	19	¥	potassium 39.1	37	Вb	rubidium 85.5	55	S	caesium 132.9	87	F	francium

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge