

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 24

1 Look at the energy profile for a reaction.

(a) Explain what can be concluded about this reaction?

Include the quantities ${\bf A}$ and ${\bf B}$ in your answer.

(see below)

(b) Look at the equation.

[4]

[2]

The table shows the bond energies of the bonds involved.

Bond	Bond energy (kJ/mol)								
C–H	435								
0=0	498								
C=O	805								
O–H	464								

(i) What type of energy change happens when bonds are broken and when bonds are made?

Bonds broken endothermic

Bonds made exothermic

(ii) Calculate the energy change for this reaction.

bond broken =
$$2736$$
bond made = 3466
energy change = $2736 - 3466 = -730$
kJ/mol [3]

- When propane reacts with oxygen, energy is given out.
 - Propane gives out 50 kJ/g.
 - A propane burner is used to boil 200 g of water to make a cup of tea.
 - The initial temperature of the water is 15 °C.

What mass of propane (in g) is needed to heat this water?

Use the following equation:

Energy transferred in $J = 4.2 \text{ J/g}^{\circ}\text{C} \times \text{mass}$ of water in g x temperature change in $^{\circ}\text{C}$.

Total Marks for Question Set 24: 14

- 1 a) The reaction is exothermic as reactants have more energy than products. A is the activation energy (the amount of energy required to get the reaction started). B is the energy change for the reaction and its value is negative.
 - c) evergy transferred = $4.2 \times 200 \times (100-15)$ = 71400J

The Periodic Table of the Elements

0)	18	2 He	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	ķ	krypton 83.8	54	Xe	xenon 131.3	98	R	radon			
(2)			17	6	щ	fluorine 19.0	17	CI	chlorine 35.5	35	Ŗ	bromine 79.9	53	ı	lodine 126.9	85	Αt	astatine			
(9)			16	8	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ъ	polonium	116	۲,	livermorium
(2)			15	7	Z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Ξ	bismuth 209.0			
9			14	9	ပ	carbon 12.0	14	Si	silicon 28.1	32	ge	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	F1	flerovium
(3)			13	2	ω	boron 10.8	13	ΝI	aluminium 27.0	31	Ga	gallium 69.7	49	ī	indium 114.8	81	11	thallium 204.4			
									12	30	Zn	zinc 65.4	48	ၓ	cadmium 112.4	80	Нg	mercury 200.6	112	5	copernicium
					1	29	₂	copper 63.5	47	Ag	silver 107.9	26	Αn	gold 197.0	111	Rg	roentgenium				
					10	28	Z	nickel 58.7	46	Pd	palladium 106.4	28	풉	platinum 195.1	110	Ds	darmsta dfium				
					o	27	ပိ	oobalt 58.9	45	牊	modium 102.9	77	H	iridium 192.2	109	Mt	meimerium				
					00	26	Fe	lron 55.8	44	Ru	ruthenium 101.1	9/	SO.	08mium 190.2	108	£	hassium				
					7	25	Mn	manganese 54.9	43	ည	technetium	22	Re	menium 186.2	107	뮵	Dohrium				
		Jec.	mass						9	24	ပ်	chromium 52.0	42	Wo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium
	Key	atomic number Symbol	name ve atomic	ю							>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	<u>ප</u>	dubnium
		atc	relativ						4	22	j	ftanium 47.9	40	Zr	arconium 91.2	72	¥	hafinium 178.5	104	ጟ	rutherfordium
				21	သွင	scandium 45.0	39	\	yttrium 88.9	i	57-71	lanthanoids	00,	89-103	actinoids						
(2)	_		2	4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	S	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium
Ð	-	← I	hydrogen 1.0	3	<u></u>	lithium 6.9	11	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	22	S	caesium 132.9	87	ī	francium

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge