

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 23

The diagrams show the structures of two forms of carbon.

- Graphite is a good conductor of electricity.
- Diamond does **not** conduct electricity.

Use ideas about structure and bonding in diamond and graphite to explain these observations.

[3]

(b) Carbon can form many thousands of different compounds.

Two examples are shown below.

Why can carbon form many thousands of different compounds? [1] It can bond to itself (and make chains / rings)

(c) Ethanol contains carbon.

Look at some information about ethanol.

- Melting point = -114°C
- Boiling point = 78°C

Predict the state of ethanol at 25°C. How can you tell?

[2]

It's in liquid state because 25°C is above -114°C and below 78°c (thus would not boil)

Total Marks for Question Set 23: 6

Graphite has a layered structure thus delocalised electrons can move between layers. (. a) Diamond has no free electrons or ions to carry charge.

The Periodic Table of the Elements

													_									
0	18	2 He	helium 4.0	10	Ne	20.2	18	Ar	argon 39.9	36	궃	krypton	00.00	24	Xe	xenon 131.3	98	R	radon			
(/	•		17	6	щ	fluorine 19.0	17	CI	chlorine 35.5	35	ģ	bromine	9.8	23	П	lodine 126.9	85	At	astatine			
(9)			16	_∞	0	oxygen 16.0	16	S	32.1	34	Se	selenium	0.87	25	Те	tellurium 127.6	84	S	polonium	116	۲	livermorium
(2)			15	7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic	6.4	51	Sb	antimony 121.8	83	ö	bismuth 209.0			
(4)			14	9	ပ	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium	0.27	20	Sn	th 118.7	82	Pb	lead 207.2	114	F1	flerovium
(3)			13	2	В	boron 10.8	13	1 Y	aluminium 27.0	31	Ga	gallium GO 7	03.7	49	드	indium 114.8	81	11	thallium 204.4			
			'						12	30	Zn	zino	4.00	48	ၓ	cadmium 112.4	80	Η̈́	mercury 200.6	112	ວົ	copernicium
									11	59	చె	copper	02.0	47	Ag	siliver 107.9	79	Αn	gold 197.0	111	Rg	roentgenium
									10	28	Z	nickel	7.00	46	Pd	palladium 106.4	78	£	platinum 195.1	110	Ds	darmsta dijum
									6	27	ပိ	cobalt	90.9	45	몺	modium 102.9	77	=	iridium 192.2	109	M	meitnerium
									8	26	Fe	lron F.F. O	00.00	44	ß	101.1	9/	SO	08mium 190.2	108	£	hassium
									7	25	Mn	manganese	04.g	43	ည	technetium	75	æ	menium 186.2	107	뮵	bohrium
		ē	mass						9	24	ပ်	chromium	0.20	42	ø	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium
	Key	tomic number Symbol	name relative atomic mass						2	23	>	vanadium	90.9	41	q	niobium 92.9	73	Та	tantalum 180.9	105	S S	dubnium
		ato	relativ						4	22	F	ftanium 47.0	y. 74	40	Zr	arconium 91.2	72		hafinim 178.5		¥	rufherfordium
,									3	21	သွ	scandium	40.0	39	>	yttrium 88.9		57-71	lanthanoids	1	89–103	actin ol ds
(2)	_		2	4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.4	40.1	88	Š	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium
Ξ	-	← I	hydrogen 1.0	3	:=	lithium 6.9	11	Na	sodium 23.0	19	¥	potassium	. SS. I	37	Sp.	rubidium 85.5	55	S	caesium 132.9	87	ᅩ	francium
	•																					

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge