

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 21

- 1 The value of the Avogadro constant is 6.02×10^{23} .
 - (a) What is meant by the Avogadro constant? [1] The number of entities in Imole
 - (b) Calculate the number of water molecules in 72 g of water, H_2O .

Give your answer to **3** significant figures.

 $72/18 = 4 \text{ moles of } H_2O$ $4 \times 6.02 \times 10^{23} = 2.408 \times 10^{24}$ Answer = ...2.41 × 10²⁴ [3]

(c) A student is reacting magnesium oxide with nitric acid.

Look at the equation for the reaction.

 $MgO + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2O$

The student wants to make 14.8 g of magnesium nitrate, $Mg(NO_3)_2$.

Calculate the masses of magnesium oxide and nitric acid that he needs.

Mass of nitric acid needed = $\dots 12 \dots 6$ [4]

Total Marks for Question Set 21: 8

	MgO		HN03		Mg (N0 ₃						
	40		12.6		14.8						
rfM =	40		63		148						
	0.1		0.2		0.1						
	1	-	2	•	١						

(0)	18 2 He ^{hum} 4.0	10 Neom 20.2	18 Ar	argon 39.9	36	Кr	rypton 33.8	54	Xe	31.3	86	Rn	radon			
(2)		9 fluorine 19.0								-						_
C	+		-0	36 36	n	ш	101 20	2		° ₽	~	4				_
(9)	16	8 oxygen 16.0	16 S	suffur 32.1	34	Se	selenium 79.0	52	Te	127.6	84	Ъ	polonium	116	2	li vermori um
(5)	15	7 N nitrogen 14.0	15 P	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	121.8	83	Bi	bismuth 209.0			
(4)	14	6 carbon 12 0	24 Si	allcon 28.1	32	Ge	germanium 72.6	50	Sn	118.7	82	Pb	lead 207.2	114	F٦	flerovium
(3)	13	5 baron 10,8	13 A1	aluminum 27.0	31	Ga	gallium 69.7	49	Ę	114.8	81	T1	thallium 204.4			
				12	30	Zn	zinc 65.4	48	ខ	112.4	80	Hg	mercury 200.6	112	ы С	copernicium
				11	29	Cu	copper 63.5	47	Ag	107.9	79	٩u	^{gold} 197.0	111	Rg	roentgenium
						iz	nickel 58.7	46	Pd	106.4	78	ħ	platinum 195.1	110	Ds	darmsta dijum
	თ					ပိ	cobalt 58.9	45	Rh	102.9	77	I	iidium 192.2	109	Mt	meitnerium
	ω								Ru	101.1	76	so	osmium 190.2	108	Hs	hassium
	۲				25	Mn	manganese 54.9	43	Lc			Re	rhenium 186.2	107	Вh	bohrium
	er nass			9	24		chromium 52.0	42	° ₽	95.9	74	3	tungsten 183.8	106	Sg	seaborgium
Key atomic number Symbol relative atomic mass				5	23	>	vanadium 50.9			92.9	I	Та	tantalum 180.9	105	Db	dubnium
	ator			4	22	F	ttanium 47.9	40	Zr	91.2	72	Ŧ	hafinium 178.5	104	Rf	rutherfordium
ľ		I		3	21	Sc	scandium 45.0	39	≻	88.9	i	57-71	lanthanoids	001 00	89-103	actinoids
(2)	7	4 Beryllium 9.0	Mg	magnesium 24.3	20	ca	calcium 40.1	38	S	87.6	56	Ba	barium 137.3	88	Ra	radium
(1)	hydrogen 1.0	3 Li Rithium A G	11 Na	23.0	19	¥	potassium 39.1	37	Rb	85.5	55	cs	caesium 132.9	87	Fr	francium

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge