

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 20

1 Look at the data about some substances.

Substance	Melting point (°C)	Boiling point (°C)	Does it conduct electricity?	Density (g/cm³)			
А	0	100	no	1.0			
В	>3000	>4000	no	3.5			
с	801	1413	Solid does not conduct but conducts when melted or when dissolved in water	2.2			

Explain the type of **bonding** present in each substance **A**, **B** and **C**.

Relate the type of bonding to the **properties** of each substance.

[6]

Total Marks for Question Set 20: 6

- substance A is a simple molecular because it has a low melting point and boiling point meaning there are weak intermolecular forces. A does not conduct electricity because there are no free electrons or ions. Hence A is likely to be a covalent structure.
- Substance B is a giant covalent structure because it has high melting t boiling points meaning there are many strong covalent bonds. B is a poor conductor because there are no free electrons or ions.
- Substance C has a high melting + boiling point because there are strong electrostastic forces of attraction between (oppositely charged) ions. C does not conduct electricity as a solid but does when molten or dissolved in water because the ions cannot move but in liquid / aqueous state, the ions can move. Hence B is likely to be an ionic compound.

1 (1) (2) (4) (5) (6) (7) (0) 1				_					_						_		
$ \left(\begin{array}{c c c c c c c c c c c c c c c c c c c $	(0)	18 2 2 4.0	10 Ne neon 20.2	18 Ar	argon 39.9	36	Кr	krypton 83.8	54	Xe	131.3 xenon	86	Rn	radon			
$ \left(\begin{array}{c c c c c c c c c c c c c c c c c c c $	(2)	17	9 F 19.0	17 CI	chlorine 35.5	35	Br	bromine 79.9	53	I	126.9	85	At	astatine			
	(9)	16	8 O ^{oxygen} 16.0	16 S	sulfur 32.1	34	Se	selenium 79.0	52	Te	127.6	84	Ро	polonium	116	2	livermorium
(2) Key annual transmission 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	(2)	15	7 N nitrogen 14.0	15 P	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	anemony 121.8	83	ä	bismuth 209.0			
(2) 2 2 3 4 4 4 4 8 8 8 12 12 12 12 12 12 12 12 12 12	(4)	14	6 carbon 12 ()	14 Si	silicon 28.1	32	Ge	germanium 72.6	50	Sn	118.7	82	Pb	lead 207.2	114	F۱	flerovium
(2) 2 2 3 4 4 5 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	(3)	13	5 B baron 10.8	13 AI	aluminium 27.0	31	Ga	gallium 69.7	49	<u>د</u>	114.8	81	T1	thallium 204.4			
(2) Key atomic number Symbol atomic number		·			12	30	Zn	zinc 65.4	48	ខូ	112.4	80	Hg	mercury 200.6	112	ы С	copernicium
(2)Key atomic number Symbol me Beydam 9.0Felative atomic number Symbol me me name 12Felative atomic number Symbol me name 12Symbol atomic number Symbol me me4Felative atomic mass atomic number4456789.0212223243452021222324434445383444243444538344142434445383324434344453833474757676775657.095.995.995.995.9101.1102.95891.292.995.995.9100.1101.1102.95889-10374757676778889-10374767676778889-10376106107108102.9atomaatomaatomaatomaatomaatomaatomaatomaatomaatomaatomaatomaatomaatoma8889-1037475790.2190.2190.2192.289-1037470106107108107108107					11	29	c	copper 63.5	47	Ag	107.9	79	٩u	^{gold} 197.0	111	Rg	roentgenium
(2) Frequencies and the set of t		10					İN	nickel 58.7	46	Pd	106.4	78	ħ	platinum 195.1	110	Ds	darmsta dijum
(2) Felative atomic number Symbol peryllum		თ					ပိ	cobalt 58.9	45	ĥ	102.9	77	I	indium 192.2	109	Mt	meitnerium
(2) 2 4 4 Be beryflum 9:0 9:0 12 Mg mane rame rame rame rame rame rame rame rame rame rame ratomic number Symbol rame rame rame rame rame rame rame rame ratio rame rame ratio r		ω					Fe	lion 55.8	44	Ru	101.1	76	os	osmium 190.2	108	Hs	hassium
(2) 2 4 4 Be beryflum 9:0 9:0 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 12 12 12 12 12 12 12 12 12		۲					Mn	manganese 54.9	43	۲	Becmedum		Re	rhenium 186.2	107	Вh	bohrium
(2) 2 4 4 Be beryflum 9:0 9:0 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 Mg magnestum 9:0 12 12 12 12 12 12 12 12 12 12		ber mass			9	24	ບັ	chromium 52.0	42	Мо В	molybdenum 95.9	74	×	tungsten 183.8	106	Sg	seaborgium
(2) 2 2 2 2 2 2 2 2 2 2 2 2 2	Key mic numb Symbol name e atomic i				5	23	>						Та	tantalum 180.9	105	Db	dubnium
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		ato			4	22	Ħ	ttanium 47.9	40	Zr	91.2	72	Ħ	hafinium 178.5	104	Rf	rutherfordium
	·				3	21	Sc	scandium 45.0	39	≻;	88.9		57-71	lanthanoids		89-103	actinoids
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(2)	7	4 Beryllium 9.0	12 Mg	magnesium 24.3	20	Ca	calcium 40.1	38	ی ا	87.6	56	Ba	barium 137.3	88	Ra	radium
	(1)	hydrogen 1.0	3 Ithium 69	11 Na	sodium 23.0	19	¥	potassium 39.1	37	Вb	85.5	55	S	caesium 132.9	87	Fr	francium

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge