

GCSE Chemistry A (Gateway Science) J248/03 C1-C3 and C7 Higher (Higher Tier)

Question Set 15

1 A student has a mixture of three substances.

Look at some information about these substances.

Substance	Melting point (°C)	Boiling point (°C)	Solubility in water					
Sand	1710	2230	Insoluble					
Sodium chloride	801	1413	Soluble					
Water	0	100						

(a) Describe how the student can separate the mixture to get pure samples of all three substances.

Explain why each method of separation works.

[4]

(see below)

(b) The student separates two solid substances **A** and **B**.

She wants to check that they are pure.

She measures the melting points of four samples of solid B.

Look at her results.

Sample	Melting point (°C)							
1	109							
2	105							
3	104–108							
4	110–112							

The student knows that a pure sample of solid **B** has a melting point of 110 °C.

She concludes that sample 4 is the purest sample of solid **B**.

Do the results support her conclusion?

Explain your answer using evidence from the table.

[3]

Total Marks for Question Set 15: 7

No because sample 4 has range higher than 110°C. Pure sample of B cannot have melting point above 110°C. Also pure samples do not melt over a range of temperature (have one specific melting point). Plus, impurities (like sample 3) have a lower melting point. As a result, sample 1 is likely to be most pure.

The Periodic Table of the Elements

0)	18	2 He	helium 4.0	10	Ne	20.2	18	Ar	argon 39.9	36	궃	krypton 83.8	54	Xe	xenon 131.3	86	R	radon			
(2)			17	6	ш	fluorine 19.0	17	C1	chlorine 35.5	35	Ā	bromine 79.9	53	Ι	lodine 126.9	85	At	astatine			
(9)			16	8	0	oxygen 16.0	16	S	suffur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ъ	polonium	116	۲	livermorium
(2)			15	7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	ē	bismuth 209.0			
(4)			14	9	ပ	carbon 12.0	14	Si	silicon 28.1	32	ge	germanium 72.6	20	Sn	th 118.7	82	Pb	lead 207.2	114	F1	flerovium
(3)			13	2	ω	boron 10.8	13	PΙ	aluminium 27.0	31	Ga	gallium 69.7	49	드	indium 114.8	81	11	thallium 204.4			
							•		12	30	Zu	zinc 65.4	48	ၓ	cadmium 112.4	80	Hg	mercury 200.6	112	<u>ნ</u>	copernicium
									7	29	చె	copper 63.5	47	Ag	silver 107.9	79	Αu	gold 197.0	111	Rg	roentgenium
5								10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	£	platinum 195.1	110	Ds	darmsta dfium	
								6	27	ပိ	cobalt 58.9	45	몺	modium 102.9	77	1	iridium 192.2	109	¥	meitnerium	
∞								56	Fe	lron 55.8	44	Ru	ruthenium 101.1	9/	SO	08mium 190.2	108	R	hassium		
_								7	25	Mn	manganese 54.9	43	ည	technetium	75	Re	menium 186.2	107	뮵	pohrium	
		e	nass						9	24	ပံ	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium
	Key atomic number Symbol name relative atomic mass		က					23	>	vanadium 50.9	41				Та	tantalum 180.9	105	op O	dubnium		
ator									4	22	j	ftanium 47.9	40	Zr	arconium 91.2	72	Ξ	hafinium 178.5	104	¥	rufherfordium
'				•					က	21	သွ	scandium 45.0	39	>	yttrium 88.9		57-71	lanthanoids	3	89-103	actinoids
(5)			2	4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	ca	calclum 40.1	38	Š	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium
(1)	-	← I	hydrogen 1.0	3		lithium 6.9	l		sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	22	S	caesium 132.9	87	ř	francium

- 1. a) Filter to remove the sand as sand is insoluble in water
 - Distil the fittate
 - So lid sodium chloride stays in flask and pure water condenses.

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge