

GCSE Chemistry A (Gateway Science)

J248/02 C4-C6 and C7 Foundation (Foundation Tier)

Question Set 29

1 This question is about properties of materials.

Police bullet-resistant vests could be made from steel or Kevlar[®].

The table shows some information about steel and Kevlar®.

	Steel	Kevlar [®]
Density (g/cm³)	7.85	1.44
Relative strength	1	5
Flexibility	low	high
Resistance to corrosion	low	high

(a) Describe and explain **two** reasons why bullet-resistant vests are made from Kevlar[®] instead of steel.

of steel.
The relative Strength is higher than steel thus it is more difficult
1 for the bullet to penetrate the keviar

2 It is much lighter than Steel thus more comfortable for people to wear [4]

(b) Look at the structure of Kevlar[®].

What type of molecule is Kevlar®? poly www

[1]

(c) Nanoparticles are being used to make a material that is better than Kevlar[®] at resisting bullets.

Nanoparticles are often made of silicon dioxide.

A silicon dioxide nanoparticle has a diameter of 18 nm.

The diameter of a silicon atom is 0.22 nm.

(i) Estimate how many times larger the silicon dioxide nanoparticle is, compared to a silicon atom.

Give your answer to 1 significant figure.

$$\frac{18}{0.22} = 81.81...$$

Number of times larger =[3]

(ii) Silicon dioxide is used as a catalyst.

Suggest why 1g of silicon dioxide is **more effective** as a catalyst when used as nanoparticles rather than as a powder.

[3]

- Nanoparticles have a greater surface area to volume ratio than powder.
- Because chemical reactions takes place on the surface of the catalyst, there would be more frequent collisions.
- Thus the rate of reaction would be faster

Total Marks for Question Set 29: 11

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge