

Additional Assessment Materials
Summer 2021

Pearson Edexcel GCSE in Chemistry (1CH0) Higher

Resource Set Topic E: Acids, bases and salts – including preparation of salts

Questions

(Public release version)

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Additional Assessment Materials, Summer 2021 All the material in this publication is copyright © Pearson Education Ltd 2021

General guidance to Additional Assessment Materials for use in 2021

Context

- Additional Assessment Materials are being produced for GCSE, AS and A levels (with the exception of Art and Design).
- The Additional Assessment Materials presented in this booklet are an **optional** part of the range of evidence teachers may use when deciding on a candidate's grade.
- 2021 Additional Assessment Materials have been drawn from previous examination materials, namely past papers.
- Additional Assessment Materials have come from past papers both published (those materials available publicly) and unpublished (those currently under padlock to our centres) presented in a different format to allow teachers to adapt them for use with candidate.

Purpose

- The purpose of this resource to provide qualification-specific sets/groups of questions covering the knowledge, skills and understanding relevant to this Pearson qualification.
- This document should be used in conjunction with the mapping guidance which will map content and/or skills covered within each set of questions.
- These materials are only intended to support the summer 2021 series.

(i) Describe the test to show the gas is hydrogen.			
.,	(2)		
Lighted splint goes off with a pop sound.			
•			
(c) Excess solid nickel carbonate is added to dilute sulfuric acid in a be	aker.		
nickel + sulfuric \rightarrow nickel + carbon carbonate + acid \rightarrow sulfate + dioxide + \downarrow	water		
carbonate acid sulfate dioxide	···dici		
Nickel sulfate is formed in solution.			
Describe how a sample of pure, dry nickel sulfate crystals can be ob			
mixture of nickel sulfate solution and excess solid nickel carbonate	in the beaker.		
	(3)		
he colution can be beated until the avertablicati	(3)		
V	ion point. The		
V	ion point. The		
ne solution can be heated until the crystallisati rystals are then cleaned with distilled water and d aper.	ion point. The		
rystals are then cleaned with distilled water and d	ion point. The		
V	ion point. The		
rystals are then cleaned with distilled water and d	ion point. The		
rystals are then cleaned with distilled water and d	ion point. The		
rystals are then cleaned with distilled water and d	ion point. The		
rystals are then cleaned with distilled water and daper.	ion point. The Iried within filte		
rystals are then cleaned with distilled water and d	ion point. The Iried within filte		
rystals are then cleaned with distilled water and daper.	ion point. The Iried within filte		

	(i)	Sta	ate wl	nat could be used to measure these pH values of 3.40 and 4.40.	(1)
рΗ		me	ter		
	(ii)			the concentration of hydrogen ions in solution ${\bf X}$ compared with that on ${\bf Y}$?	
[X	Α	ten 1	times lower	(1)
[X	В	lowe	er by a factor of 3.30/4.40	
[×	c	high	per by a factor of 4.40/3.30	
ا		D	ten 1	times higher	
				ent is planned to record the change in pH as a powdered base is cm³ dilute hydrochloric acid.	
	The	me	thod	suggested is	
		ste	p 1	add dilute hydrochloric acid up to the 50 cm³ mark on a beaker	
		ste	2	add one spatula of the base and stir	
		ste	о 3	measure the pH of the mixture	
		ste	o 4	repeat steps 2 and 3 until the pH stops changing.	
	(i)			w you could change the method so that the amounts of dilute	
		nyo	irocni	oric acid and of the base can be measured more accurately.	(2)
ute h	ıvdı	och	loric a	acid use a pipette	
	,			•	

(ii) During the experiment the pH changes from 2 to 10. If phenolphthalein indicator is added at the beginning of the experiment, a colour change occurs as the base is added.

State the colour change that occurs.

(1)

colour at start	colourless
colour at end	pink

(iii) Explain, in terms of the particles present, why the pH increases during the experiment.

(2)

OH- from	the bas	e reacts with	H ⁺ from the	e acid to	form H20.
There are	less H+	available in :	the mixture	so pH in	creases.

*(c) Some properties of four solids, A, B, C and D, are shown in Figure 6.

The solids, in no particular order, are copper carbonate, copper oxide, magnesium metal and sodium hydroxide.

magnesium n	magnesium metal and sodium hy ငဲယ O		NaOH	Cu (03
	Α	В	С	D
colour of solid	black	silver	white	green
observation when solid is added to water	black solid remains	a few bubbles appear on surface of solid	solid dissolves and forms colourless solution	green solid remains
pH of mixture of solid added to water	7	8	13	7
observation when solid is added to dilute sulfuric acid	on warming, solid disappears to form blue solution	effervescence solid disappears to form colourless solution	solid disappears to form colourless solution	effervescence solid disappears to form blue solution

Figure 6

Identify the solids **A**, **B**, **C** and **D**, explaining how the information in Figure 6 supports the identification of each solid.

(6)

o give	a blue solut	tion due to	the Cu ²⁺	ions prese	ent.	
solid 8	is magnes	ium, It rea	ets with d	lilute sulfu	ric acid to	form
		, which is c				
gas.						
Solid C	is NaCH as	it aqueous	NaOH is	colourless	and have	٩
high pt	. NaOH and	1 H2SO4 rea	act in a n	eutralisati	on reaction	to give
Na ₂ SOL	and H ₂ O	, which is c	olourless.			
when o	dded to Has	s it is a gi 804, efferv	escence is	observed	as coz is	
when a	dded to Has	SO4, efferv	escence is	observed	as coz is	
when a	dded to Has	SO4, efferv	escence is	observed	as coz is	
when a	dded to Has	SO4, efferv	escence is	observed	as coz is	
when a	dded to Has	SO4, efferv	escence is	observed	as coz is	
when a	dded to Has	SO4, efferv	escence is	observed	as coz is	

3 The word equation for the reaction between copper carbonate and dilute sulfuric acid is

$$\begin{array}{c} \text{copper} \\ \text{carbonate} + \begin{array}{c} \text{sulfuric} \\ \text{acid} \end{array} \rightarrow \begin{array}{c} \text{copper} \\ \text{sulfate} \end{array} + \begin{array}{c} \text{carbon} \\ \text{dioxide} \end{array} + \text{water} \end{array}$$

(a) (i) Complete the balanced equation for this reaction.

$$CuCO_3 + \frac{H_2SO_4}{} \rightarrow \frac{CuSO_4}{} + CO_2 + H_2O$$

(iii) What is the chemical test to show that a gas is carbon dioxide?

A bubble the gas through limewater, limewater turns cloudy

- B put damp blue litmus paper in the gas, litmus paper turns red
- C put a lighted splint into the gas, the splint is extinguished
- \square **D** measure the pH of the gas, pH = 4
- (b) Figure 4 shows a conical flask containing dilute sulfuric acid. Copper carbonate is added to the acid in the flask. The copper carbonate is added one spatula measure at a time until the reaction has finished.

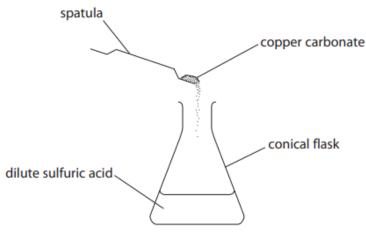


Figure 4

(2)

State **two** observations that would show the reaction has finished.

1 Copper carbonate stops dissolving

2 no effervescence observed

ilute hydrochloric a	cid completely dissociate in water to	(2) Give
(ii) 1 cm³ of hydrochloric ac distilled water.	id of pH 2 is made up to a volume of 10 cm ³ with	
State the pH of the new	solution.	(1)
	pH =	(1)
b) Magnesium oxide reacts wit magnesium chloride solutio	th dilute hydrochloric acid to produce on and water.	
MgO	$(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2O(I)$	
Write the ionic equation for	this reaction.	
2 02 + 2H+ + 2e-	→ H20 (1)	(3)
	m hydroxide powder is added in 0.1 g portions to c acid until the magnesium hydroxide is just in excess.	
Universal indicator paper ca addition of magnesium hyd	n be used to test the pH of the solution after each roxide.	
(i) Give the name of an alte measure pH.	ernative piece of equipment that can be used to	
-		(1)

(ii) State and explain how the pH changes as the magnesium hydroxide is to the dilute hydrochloric acid.	s added
to the unate hydrochione dela.	(4)
H+ + OH- → H2O	
As more magnesium hydroxide is added, more OHT is as	vailable to
react with H+ forming H2O. The H+ concentration become	nes lower so
pH increases.	
F	
TOTAL FOR PA	PER IS 35 MARK