

GCSE CHEMISTRY

Chemistry Test 5: Chemical analysis and Using resources (Higher)

Total number of marks: 35

- 0 2 This question is about water.
- 0 2. 1 In the UK, potable (drinking) water is produced from different sources of fresh water.

Explain how potable water is produced from fresh water.

[4 marks]

- 0 2. 2 A different country has:
 - · very little rainfall
 - · a long coastline
 - · plentiful energy supplies.

Suggest one process this country could use to obtain most of its potable water.

[1 mark]

0 2 . 3 Waste water is not fit to drink.

Treatment of waste water produces two substances:

- · liquid effluent
- · solid sewage sludge.

Draw one line from each substance to the way the substance is processed.

[2 marks]

Substance	Process	
	Aerobic biological treatment	
Liquid effluent	Anaerobic digestion	
	Grit removal	
Solid sewage sludge	Screening	
	Sedimentation	

0 2 This question is about lithium carbonate.

Lithium carbonate is used in medicines.

Figure 2 shows a tablet containing lithium carbonate.

Figure 2

0 2 . 1 Lithium carbonate contains lithium ions and carbonate ions.

A student tested the tablet for lithium ions and for carbonate ions.

The student used:

- a metal wire
- · dilute hydrochloric acid
- limewater.

Plan an investigation to show the presence of lithium ions **and** of carbonate ions in the tablet.

You should include the results of the tests for the ions.

[6 marks]

0 2 2 The tablet also contains other substances.

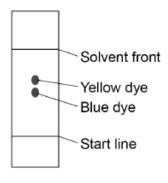
The substances in tablets are present in fixed amounts.

What name is given to mixtures like tablets?

[1 mark]

0 2 . 3	The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate.	
	Calculate the percentage by mass of lithium carbonate in this tablet.	[3 marks]
	Percentage by mass of lithium carbonate =	%

0 4 This question is about ink.


A student investigated green ink using paper chromatography in a beaker.

The student used water as the solvent.

Figure 2 shows the chromatogram obtained.

Figure 2

Diagram not to scale

 $\boxed{\mathbf{0} \ \mathbf{4}}$. $\boxed{\mathbf{1}}$ The R_f value of the yellow dye = 0.60

The distance moved by the yellow dye = 5.7 cm

Calculate the distance moved by the solvent.

[3 marks]

Distance moved by the solvent = ____ cm

0 4. 2 The green ink contains more than two compounds.

Suggest one reason why only two spots are seen on Figure 2.

[1 mark]

0 4 . 3	On the student's chromatogram, the yellow and blue spots are very close together.		
	Which two ways could increase the distance between the spots?		
	Tick (✓) two boxes.	[2 marks]	
	Allow the solvent front to travel further.		
	Dry the chromatogram more slowly.		
	Use a different solvent.		
	Use a larger beaker.		
	Use a larger spot of green ink.		
0 4.4	The manufacturers of the green ink always use the same proportions of yelloand blue dye.	ow dye	
	Suggest one reason why.	[1 mark]	
0 4 . 5	The R _f value of a dye depends on:		
	the solubility of the dye in the solvent		
	the attraction of the dye to the paper.		
	Which will $\mbox{definitely}$ produce a smaller $\mbox{R}_{\mbox{\scriptsize f}}$ value if the solvent and paper are both changed?		
	Tick (✓) one box.	[1 mark]	
	The dye is less soluble in the new solvent and less attracted to the new paper.		
	The dye is less soluble in the new solvent and more attracted to the new paper.		
	The dye is more soluble in the new solvent and less attracted to the new paper.		
	The dye is more soluble in the new solvent and more attracted to the new paper.		

1 0 Disposable cups are made from coated paper or poly(styrene).

Table 6 shows information on the life cycle assessments (LCAs) of disposable cups.

Table 6

	Coated paper cups	Poly(styrene) cups
Raw materials	Wood	Crude oil
Mass of 1 cup in g	8.3	1.9
Energy to produce 1 cup in kJ	550	200
Energy released when 1 cup is burned in kJ	166	76
Biodegradable	Yes	No
Recyclable	No	Yes

	Recyclable	No	Yes	
1 0 . 1	Evaluate the use of coated paper disposable cups. Use Table 6 and your knowledge			[6 marks
1 0 . 2	Calculate the energy needed to p	produce 1.00 kg of coated	d paper cups.	
	Use Table 6 .			
	Give your answer in standard for	m.		[2 marks]
				L
		Energy	<i>i</i> =	k.
1 0 . 3	Melamine is a polymer used to m	ake non-disposable cups	S.	
	Melamine does not melt when it	is heated.		

[2 marks]

Explain why.