

GCSE CHEMISTRY

Chemistry Test 3: Energy changes and The rate and extent of chemical change (Higher)

Total number of marks: 34

0	3	This guestion is about rate of re	action
0	∣ 3	I his question is about rate of re	act

A student investigated the rate of the reaction between magnesium and dilute hydrochloric acid.

The equation for the reaction is:

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

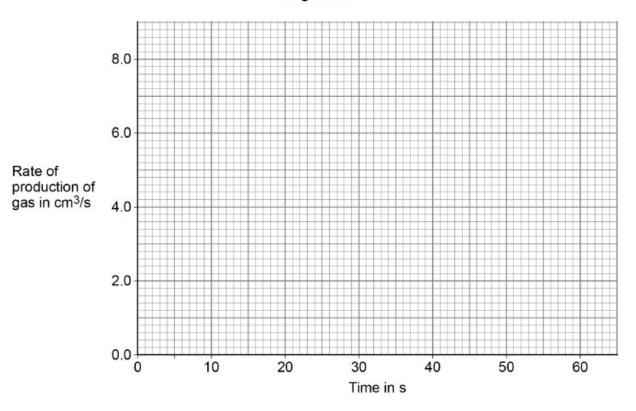
The student determined the rate of production of hydrogen gas.

0 3 . 2	What two pieces of measuring apparatus could the student use to find the rate of production of hydrogen gas?	
	[2 marks	:]

1			
2			

Table 2 shows the results of the investigation.

Table 2


Time in s	Rate of production of gas in cm ³ /s
10	6.9
20	3.9
30	2.0
40	0.9
50	0.3
60	0.0

0 3 . 3 Plot the data from Table 2 on Figure 3.

You should draw a line of best fit.

[3 marks]

Figure 3

O 3. 4 Give three conclusions that can be drawn about the rate of reaction between magnesium and dilute hydrochloric acid in this investigation.

Use data from Figure 3 and Table 2.

[3 marks

			[o marko]
1			
2			
3			
_	 		

0 3.5	The student repeated the investigation using dilute hydrochloric acid at a higher temperature.		
	All the other variables were kept the same.		
	Which two statements are correct?	[2 marke]	
	Tick (✓) two boxes.	[2 marks]	
	More bubbles were produced in the first 10 seconds.		
	The activation energy for the reaction was higher.		
	The magnesium was used up more quickly.		
	The reaction finished at the same time.		
	The total volume of gas collected was greater.		

Some students investigated the energy changes occurring in the reaction between potassium hydrogencarbonate and hydrochloric acid.

The equation for the reaction is:

$$KHCO_3(s) + HCl(aq) \rightarrow KCl(aq) + CO_2(g) + H_2O(l)$$

This is the method used.

- Measure 50 cm³ hydrochloric acid into a glass beaker.
- 2. Measure the temperature of the hydrochloric acid.
- 3. Measure a given mass of potassium hydrogencarbonate.
- 4. Add the potassium hydrogencarbonate to the hydrochloric acid.
- 5. Stir until all the potassium hydrogencarbonate has reacted.
- Record the lowest temperature reached.
- 7. Repeat three more times, using the same mass of potassium hydrogencarbonate.

Each student used a different mass of potassium hydrogencarbonate.

0 5 . 1 The method described will not give very accurate results.

Suggest one change to the apparatus that would improve the accuracy of the results.

Give a reason for your answer.

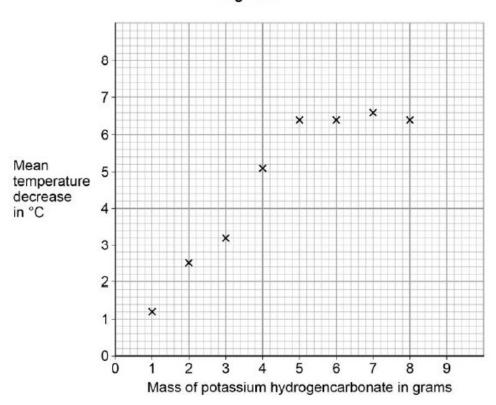
[2 marks]

0 5 . 2 The students controlled the volume of the hydrochloric acid.

Give one other control variable the students should use.

[1 mark]

Table 3 shows one student's results.


Table 3

	Trial 1	Trial 2	Trial 3	Trial 4
Initial temperature in °C	21.2	21.1	21.0	21.1
Final temperature in °C	15.6	15.4	15.6	16.6
Temperature decrease in °C	5.6	5.7	5.4	4.5

0 5 . 3	Calculate the mean temperature decrease for the results shown in Ta	ble 3.
	Ignore any anomalous results.	
	Give your answer to 1 decimal place.	
	Give the uncertainty in your answer.	[3 marks]
	Mean = °C ±	°C

Figure 4 shows the students' results.

0 5 . 4 Draw two intersecting straight lines of best fit on Figure 4.

[2 marks]

0 5 . 5 Explain why the graph has this shape.

Use data from the graph.

[3 marks]

0 5 . 6 Suggest a possible reason for the anomalous points.

Do not include errors in measuring.

[1 mark]

	This question is about methanol.	
0 9.1	Methanol is broken down in the body during digestion.	
	What type of substance acts as a catalyst in this process?	[1 mark]
	Tick one box.	
	Amino acid	
	Enzyme	
	Ester	
	Nucleotide	
	In industry, methanol is produced by reacting carbon monoxide with hydrogen	
	The equation for the reaction is: $CO(g) + 2H_2(g) \iff CH_3OH(g)$	
0 9.2	The equation for the reaction is: $CO(g) + 2H_2(g) \ \rightleftharpoons \ CH_3OH(g)$ How many moles of carbon monoxide react completely with 4.0×10^3 moles of hydrogen?	[1 mark]
0 9.2	The equation for the reaction is: $CO(g) + 2H_2(g) \ \rightleftarrows \ CH_3OH(g)$ How many moles of carbon monoxide react completely with 4.0×10^3 moles of hydrogen?	
0 9.2	The equation for the reaction is: $CO(g) + 2H_2(g) \ \rightleftharpoons \ CH_3OH(g)$ How many moles of carbon monoxide react completely with 4.0×10^3 moles of hydrogen? Tick one box.	
0 9.2	The equation for the reaction is: $CO(g) + 2H_2(g) \ \rightleftharpoons \ CH_3OH(g)$ How many moles of carbon monoxide react completely with 4.0×10^3 moles of hydrogen? Tick one box. $1.0 \times 10^3 \text{moles}$	

0 9 . 3	The reaction is carried out at a temperature of 250 °C and a pressure of 100 atmospheres.	
	The forward reaction is exothermic.	
	Explain what happens to the yield of methanol if a temperature higher than 2 is used.	250 °C
		[2 marks]
0 9.4	A pressure of 100 atmospheres is used instead of atmospheric pressure.	
	The higher pressure gives a greater yield of methanol and an increased rate reaction.	of
	Explain why.	[4 marks]
		-
	A catalyst is used in the reaction to produce methanol from carbon monoxide and hydrogen.	Э
0 9 . 5	Explain how a catalyst increases the rate of a reaction.	[2 marks]
	Suggest why a patalyst is used in this industrial process	
0 9 . 6	Suggest why a catalyst is used in this industrial process. Do not give answers in terms of increasing the rate of reaction.	
	Do Not give answers in terms of moreasing the rate of reaction.	[1 mark]
0 9 . 7	Suggest the effect of using the catalyst on the equilibrium yield of methanol.	[1 mark]
		[1 mark]