2021 ASSESSMENT MATERIALS

GCSE CHEMISTRY

Chemistry Test 3: Energy changes and The rate and extent of chemical change (Foundation)

Total number of marks: 35

0 1	This question is about copper sulfate.					
	Blue copper sulfate turns white when it is heated.					
	The word equation for the reaction is:					
	hydrated copper sulf	ate ⇌	anhydrous copper sulfate	+	water	
	blue		white			
0 1 . 1		drated cop	per sulfate in this reaction?			[1 mark]
	Tick one box.					
	Catalyst					
	Element					
	Product					
	Reactant					
0 1 . 2	What does the symbol ⇌	= mean?				14
	Tick one box.					[1 mark]
	Endothermic					
	Exothermic					
	Reversible					
	Polymerisation					
0 1.3	Complete the sentence.					[1 mark]
	The colour change when	water is a	dded to anhydrous copper s	sulfat	te	
	is white to					

A student heats 2.5 g of hydrated copper sulfate in a test tube.

The remaining solid is anhydrous copper sulfate.

0.9 g of water is given off.

[1 mark	Calculate the mass of anhydrous copper sulfate produced.	0 1 4
	Mass of anhydrous copper sulfate =	
ed copper sulfate. [2 marks]	Calculate the percentage of water contained in 2.5 g of hydrate	0 1 _ 5
%	Percentage of water =	

0 3

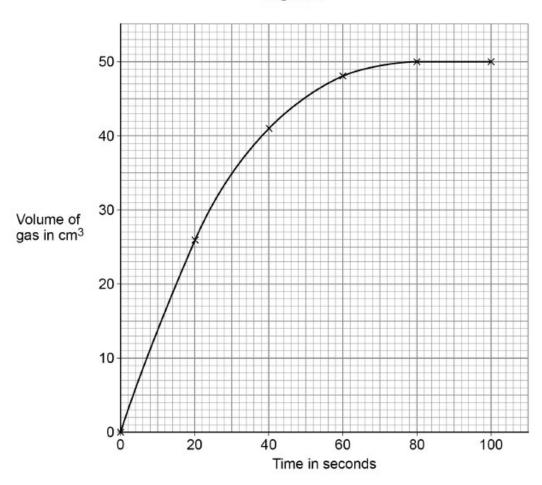
This question is about the rate of the reaction between hydrochloric acid and calcium carbonate.

A student investigated the effect of changing the size of calcium carbonate lumps on the rate of this reaction.

This is the method used.

- 1. Pour hydrochloric acid into a conical flask up to the 50 cm³ line.
- 2. Add 10.0 g of small calcium carbonate lumps to the conical flask.
- Attach a gas syringe to the conical flask.
- 4. Measure the volume of gas produced every 20 seconds for 100 seconds.
- 5. Repeat steps 1 to 4 using 10.0 g of large calcium carbonate lumps.

0 3 . 1


The student used the 50 cm³ line on the conical flask to measure the volume of hydrochloric acid.

Suggest a piece of equipment the student could use to make the measurement of volume more accurate.

[1 mark]

Figure 4 shows the student's results for small calcium carbonate lumps.

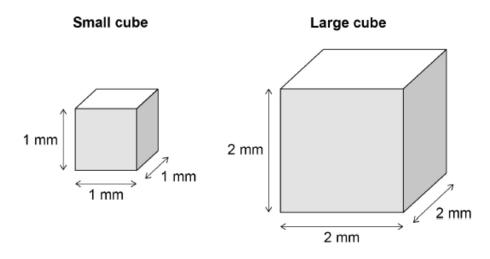
0 3.4 Determine the mean rate of reaction using **small** calcium carbonate lumps between 0 seconds and 60 seconds.

Use the equation:

$$\text{mean rate of reaction} = \frac{\text{volume of gas produced}}{\text{time taken}}$$

Use Figure 4.	[3 marks]

Mean rate of reaction = _____ cm³/s


- 0 3. 5 Describe what happens to the volume of gas collected using small calcium carbonate lumps:
 - · between 0 and 20 seconds
 - between 80 and 100 seconds.

0 3 . 6

Use Figure 4.			[2 marks]
Between 0 and 20 sec	onds		
The halance used to w	oigh 10.0 g of coloi	um carbonate lumps ca	uread an arror
The balance used to w	eigii 10.0 g oi caicii	um carbonate tumps ca	iuseu an enor.
The balance always re	ad 0.2 g before beir	ng used.	
What type of error was	caused by the bala	ince?	
Tick (✓) one box.			[1 mark]
Human error			
Random error			
Systematic error			

Figure 5 shows the dimensions of two cubes of calcium carbonate.

Figure 5

0 3 . 7	A cube of calcium carbonate	has six faces.		
	Calculate the total surface ar	rea of the large cube of cal	cium carbonate.	
	Use Figure 5.			
			[3	3 marks]
		Total surface a	nrea =	_mm²
0 3.8	The large cube of calcium ca	arbonate was divided into e	ight smaller cubes.	
	The eight smaller cubes have	e a greater total surface ar	ea than the one large c	ube.
	Compare the rate of reaction reaction when using the large		ller cubes with the rate	of
	Complete the sentence.			
	Choose the answer from the	box.		
			I	[1 mark]
	faster	slower	the same	
	The rate of reaction of the eight	ght smaller cubes is		

A student investigated the temperature change during the reaction between citric acid and sodium hydrogencarbonate solution.

Citric acid is a solid.

This is the method used.

- 1. Pour 25 cm³ of sodium hydrogencarbonate solution into a polystyrene cup.
- 2. Measure the temperature of the sodium hydrogencarbonate solution.
- 3. Add 0.25 g of citric acid to the cup.
- 4. Stir the solution.
- Measure the temperature of the solution.
- 6. Repeat steps 3 to 5 until a total of 2.00 g of citric acid has been added.

Table 4 shows some of the student's results.

Table 4

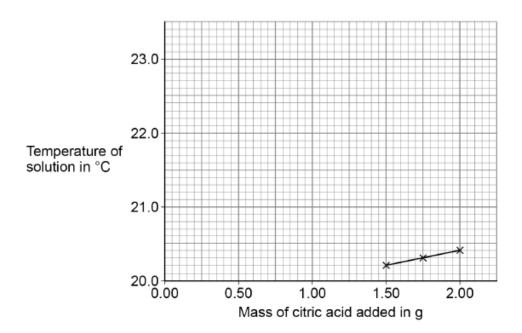
Mass of citric acid added in g	Temperature of solution in °C
0.00	22.6
0.25	22.2
0.50	21.8
0.75	21.4
1.00	21.0
1.25	20.6

0 6. 4 How do the results in Table 4 show that the reaction is endothermic?

[1 mark]

0 6.5 Three of the student's results are plotted on Figure 9.

A line of best fit for these points is drawn.


Complete Figure 9.

You should:

- plot the data from Table 4 on Figure 9
- · draw a line of best fit through the points you have plotted
- extend your line of best fit to meet the line of best fit already drawn on Figure 9.

[4 marks]

Figure 9

0 6 . 6 Determine the overall temperature change for the reaction.

Use Figure 9.

[2 marks]

Overall temperature change = °C

0 6 . 7	What is the dependent variable in this investigation?		[1 mark]
	Tick (✓) one box.		[Timark]
	Mass of citric acid		
	Temperature of solution		
	Volume of solution		

This question is about chemical cells and batteries.

A student investigated the voltage produced by different chemical cells.

Figure 7 shows the apparatus.

Copper Sulfate solution

This is the method used.

- 1. Use cobalt metal as electrode X.
- 2. Record the cell voltage.
- 3. Repeat steps 1 and 2 using different metals as electrode X.

0 4.1	Suggest two variable valid.	es the student s	should keep the same to make	the investigation
	vana.			[2 marks]
	1			
	2			
	Table 1 shows the	student's results	s.	
			Table 1	
		Electrode X	Voltage of the cell in volts	
		cobalt	0.62	
		magnesium	2.71	
		zinc	1.10	
0 4.2	Write the three meta	als used for elec	ctrode X in order of reactivity.	[1 mark]
	Most reactive			
	Least reactive			
0 4 . 2	Batteries consist of	cells.		
	Describe how a 6.0	V battery can be	e made from cells of voltage 1.	.5 V [2 marks]
0 4 . 3	Why do non-recharg	jeable cells stop	producing electricity?	[2 marks]

0 4 . 5	Which is the most suitable use for a non-rechargeable cell? [1 mark]		
	Tick (✓) one box.		
	Electric toy		
	Laptop computer		
	Mobile phone		
0 4.6	Hydrogen fuel cells or rechargeable cells can be used to power electric vehicles.		
	Suggest one advantage and one disadvantage of using a hydrogen fuel cell compared with a rechargeable cell.		
	[2 marks]		
	Advantage of hydrogen fuel cell		
	Disadvantage of hydrogen fuel cell		