2021 ASSESSMENT MATERIALS

GCSE CHEMISTRY

Chemistry Test 3: Energy changes and The rate and extent of chemical change (Foundation)

Total number of marks: 35

0 1	This question is about copper sulfate.					
	Blue copper sulfate turns white when it is heated.					
	The word equation for the reaction is:					
	hydrated copper sulfa	te ⇌	anhydrous copper sulfate	+	water	
	blue		white			
0 1 . 1	What name is given to hydr	ated cop	per sulfate in this reaction?			[1 mark]
	Tick one box.					
	Catalyst					
	Element					
	Product					
	Reactant	,				
0 1.2	What does the symbol \rightleftharpoons	mean?				[1 mark]
	Tick one box.					[1 mark]
	Endothermic					
	Exothermic					
	Reversible					
	Polymerisation					
0 1.3	Complete the sentence.					[1 mark]
	The colour change when v	vater is a	dded to anhydrous copper s	sulfat	te	
	is white to blue					

A student heats 2.5 g of hydrated copper sulfate in a test tube.

The remaining solid is anhydrous copper sulfate.

0.9 g of water is given off.

0 1 - 4	Calculate the mass of anhydrous copper sulfate produced. $2.5 - 0.9 = 1.6$		[1 mark]
0 1 . 5	Mass of anhydrous copper sulfate = Calculate the percentage of water contained in 2.5 g of hydra $\frac{0.9}{2.5} \times 100 = 36\%$		fate. [2 marks]
	Percentage of water =	36	%

0 3

This question is about the rate of the reaction between hydrochloric acid and calcium carbonate.

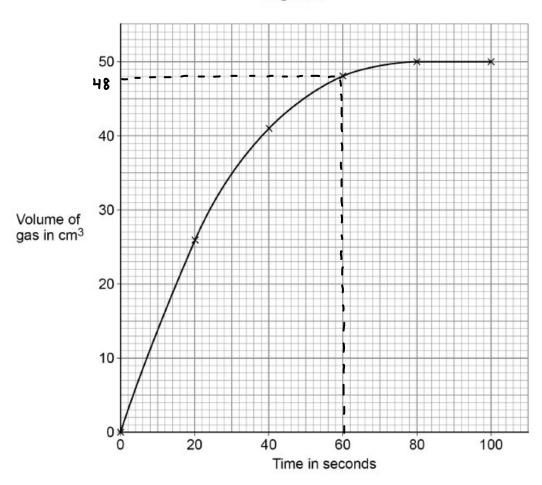
A student investigated the effect of changing the size of calcium carbonate lumps on the rate of this reaction.

This is the method used.

- 1. Pour hydrochloric acid into a conical flask up to the 50 cm³ line.
- 2. Add 10.0 g of small calcium carbonate lumps to the conical flask.
- Attach a gas syringe to the conical flask.
- 4. Measure the volume of gas produced every 20 seconds for 100 seconds.
- 5. Repeat steps 1 to 4 using 10.0 g of large calcium carbonate lumps.

0 3 . 1

The student used the 50 cm³ line on the conical flask to measure the volume of hydrochloric acid.


Suggest a piece of equipment the student could use to make the measurement of volume more accurate.

[1 mark]

measuring cylinder

Figure 4 shows the student's results for small calcium carbonate lumps.

0 3. 4 Determine the mean rate of reaction using **small** calcium carbonate lumps between 0 seconds and 60 seconds.

Use the equation:

mean rate of reaction =
$$\frac{\text{volume of gas produced}}{\text{time taken}}$$

Use Figure 4. $\frac{48 \text{ cm}^3}{60 \text{ s}} = 0.8 \text{ cm}^3 / \text{s}$ [3 marks]

Mean rate of reaction = 0.8 cm³/s

- Describe what happens to the volume of gas collected using small calcium carbonate lumps:

 between 0 and 20 seconds

 between 80 and 100 seconds.

 Use Figure 4.

 [2 marks]

 Between 0 and 20 seconds __increases proportianally to increase in time

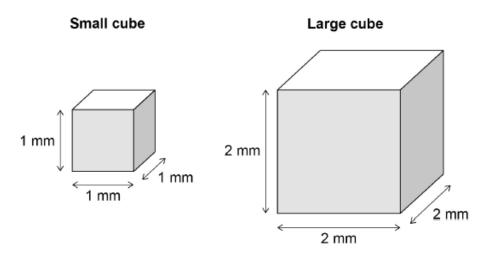
 Between 80 and 100 seconds __no more gas is collected
- 0 3 . 6 The balance used to weigh 10.0 g of calcium carbonate lumps caused an error.

The balance always read 0.2 g before being used.

What type of error was caused by the balance?

[1 mark]

Tick (✓) one box.


Human error

Random error

Systematic error

Figure 5 shows the dimensions of two cubes of calcium carbonate.

Figure 5

0 3 . 7	A cube of calcium carbonate	e has six faces.		
	Calculate the total surface a	rea of the large cube of ca	lcium carbonate.	
	Use Figure 5.			
				[3 marks]
	2 × 2 × 6 = 24 mm	n ²		
		Total surface	area = 24	mm²
0 3.8	The large cube of calcium c	arbonate was divided into	eight smaller cubes.	
	The eight smaller cubes have	e a greater total surface a	rea than the one large	cube.
	Compare the rate of reaction reaction when using the large		aller cubes with the rat	e of
	Complete the sentence.			
	Choose the answer from the	e box.		
				[1 mark]
	faster	slower	the same	
	The rate of reaction of the e	ight smaller cubes is fo	aster	
	The rate of reaction of the e	igni sinaliel cubes is	<u> </u>	

A student investigated the temperature change during the reaction between citric acid and sodium hydrogencarbonate solution.

Citric acid is a solid.

This is the method used.

- 1. Pour 25 cm³ of sodium hydrogencarbonate solution into a polystyrene cup.
- Measure the temperature of the sodium hydrogencarbonate solution.
- 3. Add 0.25 g of citric acid to the cup.
- 4. Stir the solution.
- 5. Measure the temperature of the solution.
- Repeat steps 3 to 5 until a total of 2.00 g of citric acid has been added.

Table 4 shows some of the student's results.

Table 4

Mass of citric acid added in g	Temperature of solution in °C		
0.00	22.6		
0.25	22.2		
0.50	21.8		
0.75	21.4		
1.00	21.0		
1.25	20.6		

0 6 . 4

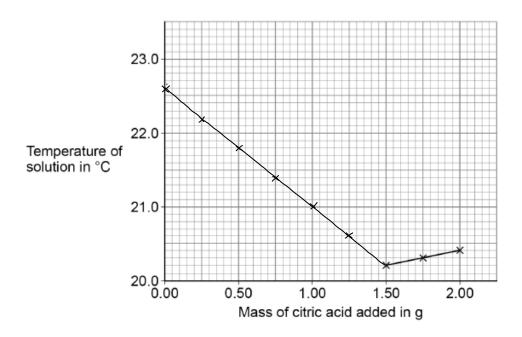
How do the results in **Table 4** show that the reaction is endothermic?

temperature of solution decreases as more citric acid is added

[1 mark]

0 6. 5 Three of the student's results are plotted on Figure 9.

A line of best fit for these points is drawn.


Complete Figure 9.

You should:

- plot the data from Table 4 on Figure 9
- · draw a line of best fit through the points you have plotted
- extend your line of best fit to meet the line of best fit already drawn on Figure 9.

[4 marks]

Figure 9

0 6. Determine the overall temperature change for the reaction.

Use Figure 9.

[2 marks]

22.6 - 20.2 = 2.4

Overall temperature change = 2.4 °C

0 6 . 7
What is the dependent variable in this investigation?

Tick (✓) one box.

Mass of citric acid

Temperature of solution

Volume of solution

0 4 This question is about chemical cells and batteries.

A student investigated the voltage produced by different chemical cells.

Figure 7 shows the apparatus.

Copper Sulfate solution

This is the method used.

- 1. Use cobalt metal as electrode X.
- 2. Record the cell voltage.
- Repeat steps 1 and 2 using different metals as electrode X.

0 4 . 1		student s	hould keep the same to make	the investigation	
	valid.			[2 marks]	
	1 concentration of	coppe	r sulfate solution		
	2 mass of electrode x				
	Table 1 shows the studen	t's results			
			Table 1		
	Elec	ctrode X	Voltage of the cell in volts		
	coba	alt	0.62		
	mag	nesium	2.71		
	zinc		1.10		
0 4 . 2	Write the three metals used Use Table 1. Most reactive	sium	etrode X in order of reactivity.	[1 mark]	
0 4.2	Batteries consist of cells. Describe how a 6.0 V batte connect 4 1.5V cell		e made from cells of voltage 1.	5 ∨ [2 marks]	
0 4 . 3			producing electricity?	[2 marks]	
	not replenished				

0 4 . 5	Which is the most suitable use for a non-rechargeable cell? [1 mark]
	Tick (✓) one box.
	Electric toy
	Laptop computer
	Mobile phone
0 4 . 6	Hydrogen fuel cells or rechargeable cells can be used to power electric vehicles. Suggest one advantage and one disadvantage of using a hydrogen fuel cell
	compared with a rechargeable cell. [2 marks]
	Advantage of hydrogen fuel cellSmall_Size
	Disadvantage of hydrogen fuel cell needs a constant supply of
	hydrogen, which is a flammable gas
	-