

AS Level Chemistry A

H032/01 Breadth in chemistry

MCQ Question Set 4 3.1 Physical chemistry

Multiple Choice Questions

1. 50.0 cm³ of 1.00 mol dm⁻³ NaOH is neutralised by 50.0 cm³ of 1.00 mol dm⁻³ HNO₃. The temperature increases by 6.0 °C.

The experiment is repeated using: 25.0 cm³ of 1.00 mol dm⁻³ NaOH and 25.0 cm³ of 1.00 mol dm⁻³ HNO₃.

What is the increase in temperature in the second experiment?

- **A** 1.5 °C
- **B** 3.0 °C
- **C** 6.0 °C
- **D** 12.0 °C

Your answer

B

[1]

2. The table shows standard enthalpy changes of combustion, $\Delta_c H$.

Substance	$\Delta_{\rm c}H/{\rm kJ}{ m mol}^{-1}$
C(s)	-393.5
H ₂ (g)	-285.8
C ₄ H ₁₀ (g)	-2876.5

What is the enthalpy change for the following reaction?

$$4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$$

- **A** –2197.2 kJ mol⁻¹
- **B** −126.5 kJ mol⁻¹
- C +126.5 kJ mol⁻¹
- **D** +2197.2 kJ mol⁻¹

Your answer

B

[1]

3	The reversible rea	ction helow is a	llowed to reach	equilibrium
ა.	1116 16 A C 1 2 I D I C 1 C 9	clion below is a	liowed to reach	ı Equilibi lülli

$$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$
 $\Delta H = -9.4 \text{ kJ mol}^{-1}$

Which change in conditions would be expected to shift the equilibrium position towards the products?

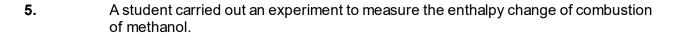
- A decrease the pressure
- **B** decrease the temperature
- **C** increase the pressure
- **D** increase the temperature

Your answer [1]

4. The equation for the reaction of aluminium sulfide, Al_2S_3 , with oxygen is shown below.

$$2Al_2S_3(s) + 9O_2(g) \rightarrow 2Al_2O_3(s) + 6SO_2(g)$$

The table shows standard enthalpy changes of formation, $\Delta_{\rm f} H^{\rm e}$.


Substance	$Al_2S_3(s)$	O ₂ (g)	$Al_2O_3(s)$	SO ₂ (g)
$\Delta_{\rm f} H^{\Phi} / {\rm kJ mol^{-1}}$	-723.8	0	-1675.7	-296.8

What is the standard enthalpy change of combustion of $Al_2S_3(s)$, in kJ mol⁻¹?

A
$$-3684.6$$
 $-(-723.7 \times 2) + (2 \times -1675.7) + (6 \times -196.8)$

$$= -3684.3$$

Your answer [1]

The energy from the combustion of methanol was used to heat a beaker containing water.

The student's calculated enthalpy change of combustion was **more** exothermic than the value in data books.

Which error could have caused this difference?

- Some methanol had evaporated from the wick before the final weighing. Α
- В In the calculation, the student used the molar mass of ethanol instead of methanol.
- C There was incomplete combustion.
- D The water boiled for 5 minutes before the final temperature was taken.

Your answer

[1]

6. The reversible reaction below is at equilibrium.

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$

$$\Delta H = -197 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Which changes in pressure and temperature would shift the equilibrium position towards the products?

	Pressure	Temperature
Α	Decrease	Decrease
В	Decrease	Increase
С	Increase	Decrease
D	Increase	Increase

Your answer

7. The reversible reaction below is at equilibrium.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

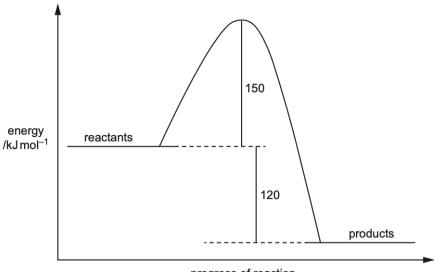
What is the expression for K_c ?

$${\bf A} \quad \frac{[{\rm N_2(g)}] \ [{\rm H_2(g)}]^3}{[{\rm NH_3(g)}]^2}$$

$$\textbf{B} = \frac{[\text{NH}_3(g)]^2}{[\text{N}_2(g)] \, [\text{H}_2(g)]^3}$$

c
$$\frac{[N_2(g)] + 3[H_2(g)]}{2[NH_3(g)]}$$

$$\mathbf{D} = \frac{2[\mathrm{NH_3(g)}]}{[\mathrm{N_2(g)}] + 3[\mathrm{H_2(g)}]}$$


Your answer

В

$$K_{C} = \left[NH_{3}\right]^{2}$$

$$\left[N_{2}\right]\left[H_{2}\right]^{3}$$

8. A reversible reaction has the enthalpy profile diagram shown below.

progress of reaction

Which statement about this reaction is correct?

- A The activation energy of the forward reaction is 120 kJ mol⁻¹.
- **B** The activation energy of the reverse reaction is 270 kJ mol⁻¹.
- C The enthalpy change of the forward reaction is −30 kJ mol⁻¹.
- **D** The reverse reaction is exothermic.

Your answer

9. Hydrogen and chlorine react as shown below.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$
 $\Delta H^2 = -184.6 \text{ kJ mol}^{-1}$

Which statement about this reaction is correct?

- A Less energy is released on bond making than is taken in during bond breaking.
- **B** The enthalpy change for the reverse equation is +184.6 kJ mol⁻¹.
- **C** The enthalpy change of formation of HCl(g) is -184.6 kJ mol⁻¹.
- **D** The temperature decreases during the reaction.

Your answer

[1]

tem	temperature?		
	Α	The activation energy decreases.	
	В	The activation energy increases.	
	С	More molecules have an energy greater than the activation energy.	
	D	The molecules collide more frequently.	
44		ur answer C	[1]
	-	s added to a system in equilibrium.	
Wha	at is the	e effect on the rates of the forward and reverse reactions?	
	Α	There is no effect on the rate in either direction.	
	В	Both rates increase by the same factor.	
	С	The rate in the forward direction increases by a greater factor than the reverse direction.	
	D	The rate in the reverse direction increases by a greater factor than the forward direction.	
	Υοι	ur answer B	[1]

What is the **main** reason for the increase in reaction rate with increasing

Total Marks for Question Set 4: 11

10

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

of the University of Cambridge