

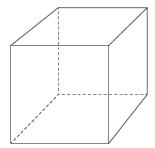
GCE AS LEVEL CHEMISTRY

S21-B410

Assessment Resource A

Structure of Matter and Simple Reactions

1. Complete the electronic structure of a bromine atom, Br.	


[1]

2. Give the oxidation state of chromium in the dichromate ion, $Cr_2O_7^{2-}$.

[1]

-
- 3. Complete the diagram to show the structure of caesium chloride, CsCl.

[1]

4. Using the formula of calcium sulfate, calculate the number of **oxygen** atoms present in 0.1 mol of calcium sulfate. [2]

Number of oxygen atoms =

5.	(a)	A student was studying the boiling temperatures of different substances including those listed in the table.
		listed iii die table.

Substance	Boiling temperature / °C
hydrogen, H ₂	-253
bromine, Br ₂	59
hydrogen bromide, HBr	-66

The student suggested that the boiling temperature could be predicted by considering the strength of the covalent bonds in the molecules.

State why the student is incorrect. Explain your reasoning and the factors that govern to boiling temperatures of these substances. [6 QE]	he R]

(b)	(i)	Silicon and hydrogen can form a series of compounds called silanes.	
		Draw a dot and cross diagram to show the electron arrangement in the silar Si_2H_6 . Show outer electrons only.	ne, [2]
	(ii)	Predict the H—Si—H bond angle in Si ₂ H ₆ . Explain your answer.	[2]

6.	 Cerrusite is a naturally-occurring crystalline ore that contains a high percentage lead(II) carbonate, PbCO₃. 					
	(a)		method of finding the percentage of lead in the ore is by forming lead ions in solution then precipitating them as lead(II) sulfate.			
		(i)	Suggest how the ore could be treated to form lead(II) ions in solution. [1]			
		(ii)	Name a solution which could be added to the lead(II) solution to form lead(II) sulfate [1]			
		(iii)	Write an ionic equation for the reaction used to form lead(II) sulfate. Include state symbols.			
		(iv)	Describe how the lead(II) sulfate precipitate should be treated to obtain results for quantitative analysis. Explain your answer. [3]			
		200000000				

(b)	(i)	4.52g of cerrusite were investigated by the method outlined in part (a) and the following results were obtained.

	Mass/g
Empty container	21.47
Container + lead(II) sulfate	25.03

			Mass/g	
		Empty container	21.47	
		Container + lead(II) sulfate	25.03	
	Calcula	ate the percentage by mass of lead	d in the cerrusite.	[3
			Percentage =	9
	Two w	alance used in the experiment reighings were made to find the um percentage error in the mass o	mass of lead(II)) sulfate. Calculate the
		Maximum pero	centage error =	9
(c)	Some sampl lead(II) carbo college labor	es of cerrusite are thought to co onate. Suggest how this hypothe atory.	ntain other carbo sis could be inve	nates in addition to the estigated in a school o [2

(a)	Suggest how the mass of carbon dioxide and the mass of water could be experiment.	[
(b)	Find the percentage by mass of each element in X .	
	Percentage carbon =	
	Percentage hydrogen =	
	Percentage oxygen =	
(c)	Calculate the empirical formula of X.	I

(d)	9.20 g of X , measured at a pressure of 103 kPa and a temperature of 100 °C, had a volume of 6.02×10^3 cm ³ . Calculate the relative molecular mass, $M_{\rm r}$, of X . [4]
	Relative molecular mass =
(e)	Use your answers to parts (c) and (d) to deduce the molecular formula of X. [1]
	Molecular formula