

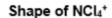
AS CHEMISTRY

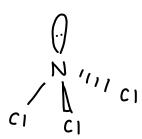
Physical and Inorganic Chemistry

Total number of marks: 45

0 6 This question is about shapes of molecules and ions.

Draw the shape of NCl3 and of NCl4+


Include any lone pairs of electrons that influence the shape.


Name the shape of NCl₃


State and explain the bond angle in NCl4+

[5 marks]

Shape of NCl₃

Name of shape of NCl3 trigonal pyramidal

Bond angle in NCl₄+ ___169.5°

Explanation of bond angle in NCl4+ there are 4 bonding pairs and no lone pairs, so there is equal repulsion between any 2 bonding pairs

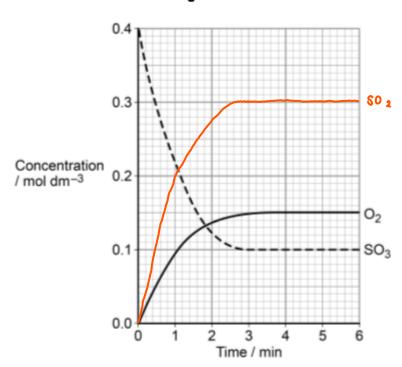
0 9 . 3 Silicon tetrafluoride (SiF₄) is a tetrahedral molecule.

Deduce the type of intermolecular forces in SiF₄
Explain how this type of intermolecular force arises and why no other type of intermolecular force exists in a sample of SiF₄

[3 marks]

Intermolecular forces in SiF4 Jondon dispersion forces

Explanation The molecule is symmetrical so it is non-polar and there are no permanent dipole-dipole interactions. There are no hydrogen bonds as there are no hydrogen present.


0 5 This question is about equilibrium.

Sulfur trioxide decomposes to form sulfur dioxide and oxygen at temperature T_1 according to the equilibrium shown.

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$
 $\Delta H = +196 \text{ kJ mol}^{-1}$

The graph in **Figure 4** shows the concentrations of sulfur trioxide and of oxygen over a period of 6 minutes at temperature T_1

Figure 4

0 5 • 1 State the time, to the nearest minute, when equilibrium is first established. Explain your answer.

[2 marks]

Time 3 minutes

Explanation concentration of O2 and SO3 are constant

0 5 . 2 Sketch on the graph in **Figure 4** how the concentration of sulfur dioxide changes over these 6 minutes at temperature *T*₁

[2 marks]

0 5.3	The temperature of the mixture was changed to T ₂ and the mixture left to establish a new equilibrium. In the new equilibrium mixture the concentration of sulfur trioxide was found to be 0.07 mol dm ⁻³					
	Deduce which of T_1 and T_2 is the higher temperature. Explain your deduction. [2 marks]					
	Higher temperatureT					
	Explanation The forward reaction is endothermic. At higher temperature,					
	equilibrium shifts to the right so concentration of SO3 is lower.					
0 5	This question is about Group 2 elements and their compounds.					
0 5.1	Explain why the melting point of magnesium is higher than the melting point of sodium.					
	Magnesium has a higher nuclear charge and more delocalised [2 marks]					
	electrons. There is a stronger attraction between the nucleus and delocalised electrons. Metallic bonds are stronger so more energy is required to break					
0 5.2	Give an equation to show how magnesium is used as the reducing agent in the extraction of titanium.					
	Explain, in terms of oxidation states, why magnesium is the reducing agent. [2 marks]					
	Equation Ti Cl 4 + 2 Mg → 2 Mg Cl 2 + Ti					
	Explanation Magnesium has an oxidation state of +2, which is lower					
	than titanium (+4)					
0 5 . 3	State what is observed when dilute aqueous sodium hydroxide is added to separate solutions of magnesium chloride and barium chloride. [2 marks]					
	Observation with magnesium chloride white precipitate forms					
	Observation with barium chloride no precipitate formed					

0	7	Chlorine is used to decrease the numbers of microorganisms in water.
		<u> </u>

When chlorine is added to water, there is a redox reaction, as shown by the equation

[1 mark]

Oxidation state of chlorine in HCl

[2 marks]

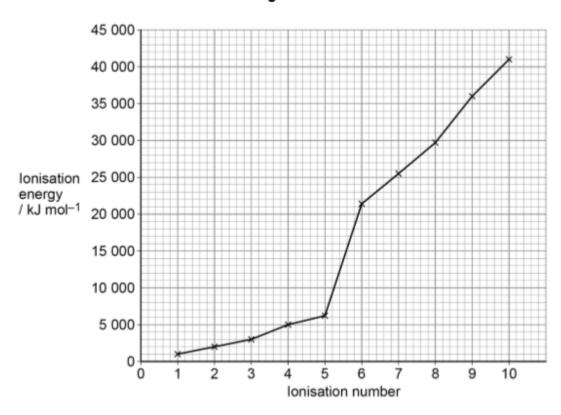
Oxidation half-equation
$$\frac{1}{2}Cl_2 + H_2O \rightarrow HOCl + H^+ + e^-$$

Reduction half-equation $\frac{1}{2}Cl_2 + e^- \rightarrow Cl^-$

There is a general trend for an increase in ionisation energy across Period 3. Give one example of an element that deviates from this trend.

Explain why this deviation occurs.

[3 marks]


Explanation the outermost electron being removed is in the 3p orbital which is at a higher energy level than 3s orbital, so less energy is required to remove an electron from Al.

[1 mark]

$$Na^{2+}(g) \rightarrow Na^{3+}(g) + e^{-}$$

Figure 1 shows the successive ionisation energies of a Period 3 element, X.

Figure 1

Identify element X. Explain your choice.

[3 marks]

Element

pho spho rous

Explanation There is a huge difference between 5th and 6th ionisation energies. Phosphorous have 5 electrons in the outermost shell. when the 6th electron is removed, it is removed from a shell neaver to the nucleus so there is less shielding effect and nuclear attraction to the electron is stronger. More energy is required. 0 7 . 2

Solid sodium iodide reacts with concentrated sulfuric acid to form iodine and sulfur in a redox reaction.

Give a half-equation to show the conversion of iodide ions to iodine.

Give a half-equation to show the conversion of sulfuric acid to sulfur.

Give an overall equation for this redox reaction.

Identify one other sulfur-containing reduction product formed when solid sodium iodide reacts with concentrated sulfuric acid.

[4 marks]

Half-equation for the conversion of iodide ions to iodine

$$2I^{-} \rightarrow I_2 + 2e^{-}$$

Half-equation for the conversion of sulfuric acid to sulfur

Overall equation

$$6I^- + H_2SO_4 + 6H^+ \rightarrow 3I_2 + S + 4H_2O$$

Other sulfur-containing reduction product

Na HSO 4

A student completes an experiment to determine the percentage by mass of sodium chloride in a mixture of sodium chloride and sodium iodide.

The student uses this method.

- 600 mg of the mixture are dissolved in water to form a solution.
- An excess of aqueous silver nitrate is added to the solution. This forms a
 precipitate containing silver chloride and silver iodide.
- Excess dilute ammonia solution is then added to the precipitate. The silver chloride dissolves.
- The silver iodide is filtered off from the solution, and is then washed and dried.

The mass of the silver iodide obtained is 315 mg

0 7 . 3 Silver nitrate is added to the solution.

Suggest why an excess is used.

[1 mark] To ensure that all of sodium chloride and sodium iodide has completely reacted

0 7 . 4 Calculate the amount, in moles, of silver iodide obtained.

 $M_r(AgI) = 234.8$

moles =
$$\frac{M}{Mr}$$

= $\frac{0.315}{234.8}$
= 1.34×10^{-3} mol

Amount of silver iodide ____1.34 × 10⁻³ mol

0 | 7 | 5 | Calculate, using your answer to Question 07.4, the mass, in grams, of sodium iodide in the mixture.

 $M_r(Nal) = 149.9$

= 149.9 × (1.34 × 10-3) = 0.2008669

△ 0.201q Mass of sodium iodide _ 0.201

0 7 6 Calculate, using your answer to Question 07.5, the percentage by mass of sodium chloride in the mixture.

 $100 - \left(\frac{0.201}{0.6} \times 100\right) = 66.5$ %

[2 marks]

0 9	Which sample, measured at room temperature and pressure, contains the greatest			
	number of the stated particles?	[1	mark]	
	A 1 g of hydrogen molecules = 0.5 mol of H ₂	0		
	B 1 g of helium atoms = 0.5 mol of He	0		
	C) 1 dm3 of hydrogen molecules = 1 mol of H2	0		
	D 1 dm3 of helium atoms = 1 mol of He	0		
1 0	5.0 g of an oxide of molybdenum contain 4.0 g of molybdenum. What is the empirical formula of this oxide? $O: \frac{1}{16} = 0.0625 \qquad \frac{0.0625}{0.0417} = 1.5$ A MoO_2 B Mo_4O_5 Mo: $\frac{4}{95.94} = 0.0417$ C Mo_2O_3 Mo: O I : 1.5 D Mo_3O_2 2 : 3	0 0 0	mark]	
1 6	Which property would you expect the element radium, Ra, to posses		mark]	
	A It forms a soluble sulfate.	0		
	B It does not react with water.	0		

C It is a good conductor of electricity.

D It forms a covalent fluoride.

1 5

Which equation does **not** represent a redox reaction?

[1 mark]

A Mg + 2HCl → MgCl₂ + H₂

0

 $B CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

C Fe + CuSO₄ \rightarrow FeSO₄ + Cu D CuO + 2HCl \rightarrow CuCl₂ + H₂O

0

1 3

NO2 ions can be reduced in acidic solution to NO How many electrons are gained when each NO2 ion is reduced?

[1 mark]

B 2

C 3

D 4

0

1 1 How many protons are there in 6.0 g of nitrogen gas?

Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

[1 mark]

 $n = \frac{6}{28}$ = 0.214 mol

B 9.0 x 10²³

C 1.8 x 10²⁴

0.214 × 6.022 × 10 23 = 1.2887 × 10 23

-1.3×10²³

D 3.6×10^{24}

0