

A Level Chemistry B (Salters) H433/02 Scientific literacy in chemistry

Question Set 12

- Strontium carbonate is used in fireworks to colour the flames red.
- (a) The red colour comes from lines of specific frequency in the atomic emission spectrum of strontium.

Explain how these lines are formed.

(b) (i) Strontium carbonate decomposes to give strontium oxide when heated.

 $SrCO_3 \rightarrow SrO + CO_2$

12.0 g of $SrCO_3$ are heated.

1

Calculate the volume of CO_2 (in cm³) that would be collected at 290 K and 155 kPa.

Give your answer to an **appropriate** number of significant figures.

[3]

(ii) A student says 'Strontium ions are larger than calcium ions, so the attraction to carbonate ions is weaker. This means that strontium carbonate has a lower thermal stability than calcium carbonate.'

Discuss the student's statement, giving the correct chemistry where necessary. [4]

(c) (i) A sample of strontium metal has the isotopic composition shown in the table.

Mass number	84	86	87	88
Abundance/%	0.56	9.86	7.00	82.58

How many neutrons are there in an atom of ⁸⁴Sr?

number of neutrons =.....[1]

(ii) Use the data to calculate the relative atomic mass of the strontium sample.

Give your answer to 2 decimal places.

relative atomic mass =	[2]	
------------------------	-----	--

(d)* Strontium oxide reacts with water to form strontium hydroxide, Sr(OH)₂.

The solubility of strontium hydroxide in water at room temperature is around $10 \, \text{g} \, \text{dm}^{-3}$.

A student is given a saturated solution of strontium hydroxide, normal titration equipment and a variety of different concentrations of hydrochloric acid.

The student wishes to find an accurate value for the concentration of the solution in $mol dm^{-3}$.

Describe in full a suitable procedure and indicate how the result would be calculated.

(e) (i) Write the equation for the equilibrium that occurs between solid strontium hydroxide and its ions in solution.

Use your equation to write the expression for the solubility product of strontium hydroxide.

Equation with state symbols: Ksp =

[2]

[6]

(ii) At 0 °C, the solubility of strontium hydroxide in water is 3.4 × 10⁻² mol dm⁻³.
Calculate the solubility product of strontium hydroxide at this temperature.
Give the units in your answer.

		solubility product = units	[3]
	(iii)	Explain how the solubility of strontium hydroxide in aqueous NaOH at 0 °C compares with 3.4 × 10⁻² mol dm⁻³.	
		Use the idea of solubility product in your answer.	[2]
(f)	(i)	The melting point of strontium is higher than the melting point of rubidium.	
		To which block of the Periodic Table do these elements belong?	[1]
	(ii)	Explain the difference in melting point.	[2]

Total Marks for Question Set 12: 30

Resource Materials

Question Set No: 12

(0) 4.0 He He 18	10 Ne 20:2 Ar 39:9	Kr Kr 83.8 83.8 83.8 Xe	101.0 86 ration		
17 (7)	9 Puorine 19.0 17 C1 35.5	35 Br bromine 79.9 53 I I	1.20.3 85 At ******	71 Lu Itaetium 175.0	103 Lr Iawencium
(6)	8 00 16.0 8 8 8 8 8 8 16 32.1	34 Se setentum 79.0 52 Te betrutum	127.0 84 Po potnum 116 Lv Ivermonum	70 Yb Maertium 173.0	102 No ^{nobeium}
15 (5)	N 144.0 15 P 31.0 31.0	33 As As ansento 74.9 51 51 51	121.0 83 Bi bismuth bismuth 209.0	69 Tutur 168.9	101 Md mendelevium
(4)	6 carbon 12:0 14 Si 28:1	32 Ge 9emenium 72.6 Sn sn	116.7 82 Pb wad 207.2 114 F1 fnerowam	68 Er enteum 167.3	100 Fm ջոեսո
13 (3)	5 B boon 10.8 13 A1 shiminum 27.0	31 Ga 90.7 69.7 10 In In	114.0 81 thellum 204.4	67 Ho hoimum 164.9	99 Es einsteinium
	12	30 Zn ^{zin} 65.4 48 48 cd	11.2.4 80 Hg mensury 200.6 112 Cn copertition	66 Dy 162.5	98 Cf aitfomium
	÷	29 Cu 63.5 63.5 Ag	79 79 808 197.0 111 Rg noentpenium	65 Tb Intelum 158.9	97 Bk berkeium
	9	28 Ni 58.7 58.7 46 Pdd Pdd	78 Pt petinum 195.1 110 Ds damate dum	64 Gd 157.2	96 Cm ortun
	თ	27 Co 58.9 58.9 45 Rh Rh	102.9 Ir irdum 192.2 Mt Mt meiherium	63 Eu 152.0	95 Am americum
	00		76 76 0s emium 190.2 108 Hs hessium	62 Sm 150.4	94 Pu putentum
	~	25 Min manganase 54.9 43 T c bechedium	75 Re ^{menium} 186.2 107 Bh bohñum	61 Pm pometrium 144.9	93 Np metunium
er mass	۵	24 Cr chromium 52.0 42 M0 M0 M0	V 74 W 183.8 183.8 106 Sg	60 Nd 144.2	92 U измил 238.1
Key atomic number Symbol relative atomic mass	م س	50 050		59 Pr 140.9 1	91 Pa
ato	4	22 Ti tamium 47.9 40 Zr Zr	91.2 72 Hf Infrium 178.5 104 Rf Rf	58 Ce cerum 140.1	90 Th thorium 232.0
	- 	2 4 ¥0	57-71 Ianthanciós 89-103 actiniciós	57 La hathanum 138.9	89 Ac adhium
5 (5)	4 Be benftum 9.0 Mg magnesum 24.3	20 Ca aakium 40.1 38 Sr srontium	56 56 Ba barium 137.3 88 88 Ra Ra Ra		
(1) H H 1.0 1.0	3 6.9 Na Na 23.0	-	55 55 Cs castum 132.9 87 Fr francium		

The Periodic Table of the Elements

General Information

Molar gas volume = $24.0 \text{ dm}^3 \text{ mol}^{-1}$ at RTP Avogadro constant, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ Specific heat capacity of water, $c = 4.18 \text{ Jg}^{-1} \text{ K}^{-1}$ Planck constant, $h = 6.63 \times 10^{-34} \text{ JHz}^{-1}$ Speed of light in a vacuum, $c = 3.00 \times 10^8 \text{ ms}^{-1}$ Ionic product of water, $K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ at 298 K 1 tonne = 10^6 g Arrhenius equation: $k = Ae^{-E_a/RT}$ or $\ln k = -E_a/RT + \ln A$ Gas constant, $R = 8.314 \text{ Jmol}^{-1} \text{ K}^{-1}$

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge