

A Level Chemistry B (Salters) H433/02 Scientific literacy in chemistry

Question Set 11

1 Twaron[™] is a polymer used to make body armour.

The polymer strands are made using the reaction in Fig. 1.1.

$$C_1$$
 + H_2N - NH_2 - polymer strand of Twaron

Fig. 1.1

(a) Name the functional groups in compounds A and B.

A.....

B.....[2]

(b) Suggest the O=C-Cl bond angle in compound **A**.

Explain your answer. [3]

(c) Compound A can be made by the reaction in Fig. 1.2.

Fig. 1.2

Calculate the mass of compound **A** that can be made from 32 g of benzene-1,4-dicarboxylic acid if the yield is 67%.

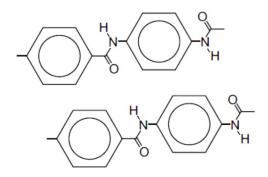
Give your answer to the nearest whole number.

mass of compound
$$A = g$$
 [2]

(d) A synthetic route for making compound **B** is shown in **Fig. 1.3**.

Fig. 1.3

Use your chemical knowledge and the Data Sheet to suggest possible reagents for **steps** 1 and 2.

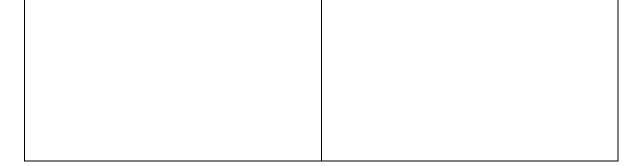

Step 1.....

Step 2

(e) (i) The polymer strands link together by intermolecular bonds when they are spun to form Twaron. This gives the fabric its tough quality.

Name the strongest intermolecular bonds that can form between the chains.

ii) Mark the positions of the intermolecular bonds by drawing dotted lines on the diagram



(f) (i) A Twaron polymer strand is hydrolysed.

below.

State the conditions that could be used to hydrolyse the polymer.

(ii) Draw the formulae of the **two** organic products of hydrolysis in the boxes.

[2]

[1]

[1]

[1]

Resource Materials

Question Set No: 11

The Periodic Table of the Elements

0	18	2 He	helium 4.0	10	Ne	20.2	18	Ar	argon 39.9	36	Ā	krypten 83,8	54	Xe	31.3	98	R	nadon			
6			17	6	ш	fluorine 19.0	17	CI	cliarine 35.5	35	ģ	79,9	53	-	iodine 126.9	85	Ą	asbaline			
(9)			16	00	0	000gen 16.0	16	s	32.1	34	Se	79.0	52	Te	127.6	84	8	polonium	116	۲۸	ivermonum
(2)			15	2	z	nitrogen 14.0	15	۵	shosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	ā	209.0			
€			14	9	ပ	12.0	14	Si	silom 28.1	32	g	germenium 72.6	20	S	118.7	82	Ър	207.2	114	F1	пеломит петомит
(3)			13	2	В	10.8	13	Αĩ	aluminium 27.0	31	gg	9allum 69.7	49	드	indium 114.8	81	11	thellium 204.4			
									12	30	Zu	anc 65.4	48	8	112.4	80	롼	200.6	112	ວົ	соретіст
									11	58	రె	оде 63.5	47	Ag	107.9	28	Αn	gold 197.0	111	Rg	noengenum
									10	28	Z	nickel 58.7	46	Pd	106.4	78	£	pletinum 195.1	110	Ds	damneta dibum
									6	22	ပိ	odealt 58.9	45	몺	102.9	22	۵	indum 192.2	109	Mŧ	messeum
									00	56	æ	85.83 83.83	44	Ru	101.1	9/	õ	08mism 190.2	108	£	mass nm
									7	25	Mn	manganese 54.9	43	ဍ	bachnatium	75	Re	тепіш 186.2	107	듄	Dohnum
		Jec	mass						9	24	ប៉	chromium 52.0	42	W	таубалит 95.9	74	8	tungsben 183.8	106	Sg	seaborgum
	Key	atomic number Symbol	ve atomic						2	23	>	vanadium 50.9	41	g	niotium 92.9	73	Тa	180.9	105	음	dubnum
		atc	relati						4	22	F	tomium 47.9	40	Zr	ziroonium 91.2	72	Ì	hefhium 178.5	104	¥	nutherfordium
									8	21	Sc	scandum 45,0	39	>	988.9		57-71	lanthandos	1	88-103	actinaids
(3)			2	4	Be	Benylfum 9.0	12	Mg	тврнея 24.3	20	ပီ	40.1	38	Š	strontium 87.6	26	Ba	137.3	88	Ra	Rigina
Ξ	-	- I	hydrogen 1.0	က	=	187ium 6.9	7	Na	23.0	19	¥	39.1	37	Rb	nbidium 85.5	22	ర	132.9	87	Ŧ	francium

Some useful organic reactions

1
$$R-Br + CN^- \longrightarrow R-CN + Br^-$$

2 R-CN
$$\xrightarrow{H^+ \text{ (aq)}}$$
 R-COOH

$$\begin{array}{c} & & & \\ & &$$

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge