

A Level Chemistry B (Salters) H433/02 Scientific literacy in chemistry

Question Set 9

	The pH of human blood needs to be held within strict limits for good health. The pH is controlled using buffer systems. One buffer system is based on the equilibrium in equation 4.1.	
	$CO_2 + H_2O \iff HCO_3^- + H^+$ equation 4.1	
(i)	Give the systematic name for HCO_3^{-} .	[1]
(ii)	HCO_3^- can act as either an acid or a base.	
	Give the formula of the conjugate base of HCO_3^- .	[1]
(i)	Draw a <i>'dot-and-cross'</i> diagram for CO ₂ and use it to name the shape of the molecule. <i>'Dot-and-cross'</i> diagram:	
	Shape of molecule	[2]
(ii)	A CO ₂ molecule has no dipole. A student says that this is because bonds between carbon and oxygen atoms are not polar.	
	Discuss the student's statement.	[2]
	Another student says that $\rm CO_2$ will form only instantaneous dipole-induced dipole bonds with water molecules.	
	Explain why this is incorrect.	[2]
(i)	For the equilibrium in equation 4.1 :	
	$K_{\rm a} = \frac{[{\rm HCO}_3^{-1}][{\rm H}^+]}{[{\rm CO}_2({\rm aq})]} = 7.9 \times 10^{-7} {\rm mol}{\rm dm}^{-3}$	
	A saturated solution of CO ₂ at 298K has a concentration of 3.3×10^{-2} mol dm ⁻³ .	
	Calculate the pH of this solution.	
	pH =	[2]
	(i) (i) (i)	The pH of human blood needs to be held within strict limits for good health. The pH is controlled using buffer systems. One buffer system is based on the equilibrium in equation 4.1. $CO_2 + H_2O \longrightarrow HCO_3^- + H^+ equation 4.1$ (i) Give the systematic name for HCO ₃ ⁻ . (ii) HCO ₃ ⁻ can act as either an acid or a base. Give the formula of the conjugate base of HCO ₃ ⁻ . (i) Draw a 'dot-and-cross' diagram for CO ₂ and use it to name the shape of the molecule. <i>'Dot-and-cross'</i> diagram: Shape of molecule (ii) A CO ₂ molecule has no dipole. A student says that this is because bonds between carbon and oxygen atoms are not polar. Discuss the student's statement. Another student says that CO ₂ will form only instantaneous dipole-induced dipole bonds with water molecules. Explain why this is incorrect. (i) For the equilibrium in equation 4.1: $K_a = \frac{ HCO_3^- H^+ }{ CO_2(aq) } = 7.9 \times 10^{-7} \text{ moldm}^{-3}$ A saturated solution of CO ₂ at 298K has a concentration of 3.3 × 10 ⁻² moldm ⁻³ . Calculate the pH of this solution.

1

(ii) Calculate the concentration of a solution of HCl that has the same pH as the solution in (i).

(e) (i) The pH of healthy human blood is 7.4.

Calculate the ratio of $\frac{[\text{HCO}_3^-]}{[\text{CO}_2]}$ in healthy human blood.

 $\frac{[HCO_3^{-1}]}{[CO_2]} = \dots$ [2]

(ii) A patient's blood has a pH below 7.4. A student says that HCO ⁻ needs to be added to the patient's blood.

Say, with reasons, whether the student is correct.

(f) Some students mix $20 \text{ cm}^3 \text{ of } 5.0 \times 10^{-3} \text{ mol dm}^{-3} \text{ HC} l$ with $20 \text{ cm}^3 \text{ of } 1.0 \times 10^{-2} \text{ mol dm}^{-3}$ NaOH.

Calculate the pH of the resulting solution.

pH = [3]

[2]

Total Marks for Question Set 9: 18

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge