

A level Chemistry B H433/02 Scientific literacy in chemistry

Question Set 7

		Propene gas, C ₃ H ₆ , is obtained industrially from a variety of sources. Propene is mainly used as a starting material for making polymers.											
(a)	(i)	The mass spectrum of propene has several peaks including those at m/z 27 and 43.											
		Give the species responsible for these											
		peaks27											
		43	[2]										
	(ii)	Propene has an isomer, cyclopropane.											
		Explain why high-resolution mass spectrometry would not distinguish between propeneand cyclopropane.	[2]										
	(iii)	Suggest, with reasons, two spectroscopic methods (apart from mass spectroscopy) thatwould distinguish between cyclopropane and propene.											
		Method 1											
		Reason:											
		Method 2											
		Reason:											
			[4]										
(b)	(i)	How many σ and π bonds are there in a propene molecule?											
,		Number of σ bonds Number of π bonds	[1]										
	(ii)	Propene has a H–C–H bond where the C atom forms a double bond.											
		What is the bond angle of this H–C–H bond?	[1]										
			r.1										

1

Propene, C_3H_6 , can be made by cracking longer-chain hydrocarbons. (C) (i)

> Write the equation for the cracking of nonane to give two molecules of propene and [1] oneother molecule.

(ii) What mass of propene (in kg) would be obtained from 15 kg of nonane in the reactionin (i) if the percentage yield was 85%?

		mass of propene =kg.	[2]				
(d)		Most of the propene that is manufactured is used to make the polymer poly(propene).					
		Draw the full structural formula of the repeating unit of poly(propene). [1]					
(e)	(i) Cyclohexene is another industrially important alkene.						
		Explain how the enthalpy change of hydrogenation of cyclohexene is used to giveevidence for the bonding in the benzene molecule.	[3]				
	(ii)*	Cyclohexene and benzene both react with bromine but in different ways.					
		Compare the two reactions and explain why they are different.	[6]				

Total Marks for Question Set 7: 23

Resource Materials

Question Set No: 7

551011	501	110.7												
(0)	18	2 heitum 4.0	10 Ne 20:2	18 Ar ^{accon}	39.9	36 Kr ^{krypten}	83.8 54	Xe	131.3	86 86	nadon			
6		17	9 fucrine 19.0	17 C1 cNorine	35.5	35 Br	79.9	I I	126.9	85 At	astatre			71 Lu IudeBium 175.0
(9)		16	8 0 16.0			34 Se	79.0 52	Te	127.6	84	polonium	116	LV Ivermonium	70 Yb yttertium 173.0
(2)		15	N Itrogen 14.0	15 P	31.0	33 As	74.9	Sb	121.8	83 Bi	bismuth 209.0			69 Tm thuitum 168.9
(4)		14	6 enton 12:0			32 Ge gemenium	72.6	s ns	118.7	82 Ph	207.2	114	F1 ferowim	68 Er enteum 167.3
(3)		13	0.8 10.8 10.8	13 A1 atuminium	27.0	31 Ga	69.7 49	LI a	114.8	81	thelium 204.4			67 Ho ^{hoimum} 164.9
					12	30 Zn	65.4 48	o od	112.4	88	mercury 200.6	112	copericium	66 Dy dysprosium 162.5
					1	Cu opper	63.5	A B A	107.9	79	gold 197.0	111	RG minethenium	65 Tb tatkim 158.9
					10	28 Ni niskal	58.7 46	Pd	106.4	8. t	pletinum 195.1	110	US dameb@um	64 Gd geddinium 157.2
					6	27 Co oobalt	58.9 45	Rh	102.9	77	иáum 192.2	109	MIT meithenium	63 Eu europium 152.0
					80	26 Fe		Ru	101.1	76	osmium 190.2	108	hassium	62 Sm samañum 150.4
			_		7	25 Mn manganesee	54.9	TC		75 Do	menium 186.2	107	bahium	61 Pm prometrium 144.9
		ber mass			9	24 Cr chromium	52.0 42	Mo	95.9	74 W	tungstein 183.8	106	eebogum migrosee	60 Nd neodymium 144.2
	Key	atomic number Symbol name relative atomic mass			2	23 V V		6			tantatum 180.9	105	dubeium	59 Pr 140.9 1
		ato			4	22 Ti tămium	47.9 40	Zr	91.2	72 Hf	hefnium 178.5	104	Nthertholium	58 Ce cerum 140.1
-					e	21 Sc scandum	45.0 39	ς γ	88.9	57-71	Imthenciós	89-103	actinciós	57 La Ianthanum 138.9
(2)	-	2	L go	12 Mg macressium	24.3	20 Ca		Sr	87.6	56	barium 137.3	8	Ráim Báim	
(1)	÷	1.0 H 1.0	3 Li 6.9	11 Na ^{sodum}	23.0	19 Potessium	39.1	Rb	85.5	55	osesium 132.9	87	factur	

Lr Mention

No No

101 Md

100 E M

99 Es

98 Cf

97 BK

96 G m

95 Am

94 Pu

Parameter 93

92 ∪ 238.1

91 Pa

90 10 232.0

89 Ac

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge