

A Level Chemistry B (Salters) H433/02 Scientific literacy in chemistry

Question Set 6

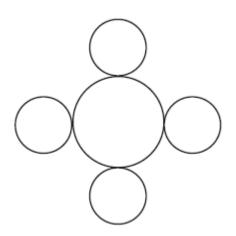
'Morton's salt'[™] contains a mixture of sodium chloride with magnesium carbonate. It is advertisedusing the slogan 'When it rains it pours' indicating that the table salt is free-flowing in humid weather.

Magnesium carbonate is hydroscopic (absorbs water) and forms hydrated salts, eg $MgCO_3 \cdot 3H_2O$, but does not dissolve. This stops the sodium chloride absorbing water.

(a) (i) Some data for the dissolving of NaCl is given below.

1

Enthalpy change	Value / kJ mol ⁻¹
∆ _{LE} H NaC1	-780
∆ _{hyd} H Na⁺	-402
∆ _{hyd} H C <i>l</i> ⁻	-374


Calculate a value for the enthalpy change of solution of NaCl.

enthalpy change of solution of NaCl =

[1]

(ii) The diagram below shows the pattern of ions in **one face** of a NaC*l* lattice.

Extend the diagram to show the repeating pattern by adding **three** more suitable ions.Label one Na⁺ ion and one Cl^- on the diagram.

(b) Some students heat a sample of $MgCO_3 \cdot 3H_2O$ to try to make $MgCO_3$. Calculate the percentage loss in mass they will obtain if they succeed.

percentage loss in mass = % [2]

(c) The students continue to heat the $MgCO_3$ formed and realise that the compound is decomposing, giving off CO_2 gas.

The students want to obtain $200 \text{ cm}^3 \text{ CO}_2$ at 290 K and 99 kPa. What mass of MgCO₃ should they heat?

mass of
$$MgCO_3 = g$$
 [3]

(d) (i) Magnesium has a higher first ionisation enthalpy than calcium.
Write an equation for the reaction for the first ionisation enthalpy of magnesium.
Include state symbols.

[1]

- (ii) Explain why magnesium has a higher first ionisation enthalpy than calcium. [2]
- (e) (i) Some students are given a mixture of magnesium carbonate with another Group 2 carbonate. They dissolve the mixture in an acid. They test the solution of salts formed as shown in the table below.

Test	Result				
Flame test	Green flame				
Add dilute nitric acid followed by silver nitrate solution	White precipitate				

- Name the acid that the students used to dissolve the mixture of carbonates. [1]
- (ii) Name the other Group 2 carbonate that was mixed with the magnesium carbonate. [1]

Total Marks for Question Set 6: 13

Resource Materials

Question Set No: 6

The Periodic Table of the Elements

(0)	18 He he	10 Ne 20.2	18 Ar 39.9	36 Kr 83.8	54 Xe ^{xanon} 131.3	Rn ^{seton}			
6	17	9 F Nuorine 19.0	17 C1 civorine 35.5	35 Br ^{bromine} 79.9	53 I iotine 126.9	85 At astatre		71 Lu Iutotum 175.0	103 Lr Iawrencium
(9)	16	8 0 16.0	16 S sufter 32.1	34 Se setentum 79.0	52 Te tetuium 127.6	84 Po potentum	116 Lv Ivermonium	70 Yb yttertium 173.0	102 No nobelum
(2)	15	7 N nitrogen 14.0	15 P 31.0	33 As arsenic 74.9	51 Sb antimony 121.8	83 Bi ^{bismuth} 209.0		69 Tm 168.9	101 Md mendetextum
(4)	14	6 enton 12:0	14 Si 28.1	32 Ge 72.6	50 Sn 118.7	82 Pb ***d 207.2	114 F1 ferrowium	68 Er ettum 167.3	100 Fm
(3)	13	5 B 10.8 10.8	13 A1 atuminum 27.0	31 Ga eatium 69.7	49 In 114.8	81 T1 thellum 204.4		67 Но №тыты 164.9	99 Es einsteinium
	·		12	30 Zn ^{zinc} 65.4	48 Cd admium 112.4	80 Hg ^{mercury} 200.6	112 Cn copenicium	66 Dy dysprosium 162.5	98 Cf catfornium
			1	29 Cu 63.5	47 Ag siter 107.9	79 Au 908	111 Rg nentjenium	65 Tb ^{twthum} 158.9	97 Bk berkeium
			10	28 Ni nitikal 58.7	46 Pd patadium 106.4	78 Pt Petinum 195.1	110 Ds dametadium	64 Gd 90ddinium 157.2	96 Cm ortum
			6	27 CO othelt 58.9	45 Rh ^{thodum} 102.9	77 Ir 192.2	109 Mt ^{meinenum}	63 Eu 152.0	95 Am americum
			8	26 Fe ion 55.8	44 Ru 101.1	76 Os esmium 190.2	108 Hs hessium	62 Sm samarium 150.4	94 Pu putenum
		_	7	25 Mn mnganese 54.9	43 Tc technetium	75 Re ^{menum} 186.2	107 Bh bohium	61 Pm prometrium 144.9	93 Np metunium
[Key atomic number Symbol name relative atomic mass		9	24 Cr chronium 52.0	42 Mo 95.9	74 W tungsteen 183.8	106 Sg execonjum	60 Nd ^{neodmum} 144.2	92 U 238.1
			5	23 V vanačium 50.9	41 Nb ^{nictium} 92.9	73 Ta tenteium 180.9	105 Db dubrium	59 Pr 140.9 1	91 Pa protectinium
	ato		4	22 Ti tamium 47.9	40 Zr zironium 91.2	72 Hf Isfrium 178.5	104 Rf nthertodium	58 Ce cerum 140.1	90 Th thorium 232.0
		_	ę	21 Sc scendum 45.0	39 ¥tříum 88.9	57-71 Ianthanciols	89-103 adinatios	57 La hanthomum 138.9	89 Ac actinum
(2)	7	4 Be banylium 9.0	12 Mg 24.3	20 Ca onkium 40.1	38 Sr strontium 87.6	56 Ba Isrium 137.3	88 Ra	•	
Ð	1 - 1 1,000 1.0	3 Li Bhum 6.9	11 Na sodium 23.0	19 K potassium 39.1	37 Rb ^{ubidum} 85.5	55 Cs eestum 132.9	87 Fr francium		

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge