

A Level Chemistry B (Salters) H433/02 Scientific literacy in chemistry

Question Set 4

Chromium is a metal with many uses, one of which is the production of a shiny chromium platingon steel.

Chromium is made from its ore chromite, $FeCr_2O_4$, by the following reactions. Iron has one of its common oxidation states in chromite.

$4FeCr_2O_4 + 8Na_2CO_3 + 7O_2 \rightarrow 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2$	equation 4.1
$2\mathrm{Na}_{2}\mathrm{CrO}_{4}^{}+\mathrm{H}_{2}^{}\mathrm{SO}_{4}^{}\rightarrow\mathrm{Na}_{2}^{}\mathrm{Cr}_{2}^{}\mathrm{O}_{7}^{}+\mathrm{Na}_{2}^{}\mathrm{SO}_{4}^{}+\mathrm{H}_{2}^{}\mathrm{O}$	equation 4.2

$$Na_2Cr_2O_7 + 2C \rightarrow Cr_2O_3 + Na_2CO_3 + CO$$
 equation 4.3

$$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr$$
 equation 4.4

Complete the table below showing the oxidation states of chromium species in (a) (i) the equations above.

Equation no.	Oxidation state ofCr in reactant	Oxidation state ofCr in product	Has Cr been oxidised, reduced or neither?		
4.1					
4.2					
4.3					
4.4					

For each equation state whether chromium has been reduced, oxidised or neither.

(ii) Calculate the maximum mass of chromium (in kg) that could be obtained from 1000 g of chromite.

		n	iass =	kg	[2]
(b)	(i)	Chromium plating is carried out using a solution of chromium(III) chl graphite anode.	oride with a		
		Write the electron configuration of a Cr ³⁺ ion, using sub-shells and atom	nic orbitals.		[1]
	(ii)	Draw a labelled diagram of a simple apparatus to carry out chromium steel object in a student laboratory.	plating of a		[3]
	(iii)	Write a half-equation for the cathode reaction in the cell in (b)(ii) .			[1]

1

[4]

[2]

(iv) A 'mole of electrons' is 96 500 coulombs and a coulomb is a current of 1 amp flowing for 1 second.

Calculate the time (in hours) needed to deposit 26 g of chromium at a current of 5.0 amps in the cell in (b)(ii).

time = hours [3]

(c) (i) In a solution of chromium(III) chloride an equilibrium exists, as shown in **equation 4.5**.

 $[CrCl_2(H_2O)_4]^+ + 2H_2O \qquad \rightleftharpoons \qquad [Cr(H_2O)_6]^{3+} + 2Cl^$ green violet equation 4.5

Name the ligands in the green complex.

(ii) Some students have a violet solution of chromium(III) chloride.

Use your knowledge of equilibria to suggest and explain how they might make the violet solution turn green.

Give the **name** of any reagent required.

[2]

[1]

(d) (i) The concentration of an ethanol solution can be measured using the following steps.

- add excess acidified dichromate, $Cr_2O_7^{2-}$, some of which reacts with the ethanol. add excess iodide that reacts with the remaining dichromate.
- •
- titrate the iodine produced with sodium thiosulfate.

$$3C_{2}H_{5}OH + 2Cr_{2}O_{7}^{2-} + 16H^{+} \rightarrow 3CH_{3}COOH + 4Cr^{3+} + 11H_{2}O$$
 equation 4.6
$$Cr_{2}O_{7}^{2-} + 6I^{-} + 14H^{+} \rightarrow 2Cr^{3+} + 3I_{2} + 7H_{2}O$$
 equation 4.7

$$I_2 + 2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2I^- \qquad \qquad \text{equation 4.8}$$

Some students add acid and 20.0 cm³ of 0.200 mol dm⁻³ Cr₂O₇²⁻ to 25.0 cm³ of a 'lowalcohol' beer.

They add excess iodide ions and find that the iodine produced reacts with 27.6 cm³ of $0.100 \text{ mol dm}^{-3} \text{ Na}_2 \text{S}_2 \text{O}_3$.

Calculate the concentration of the ethanol in the beer (in mol dm⁻³) and then the percentage of ethanol (in g per 100 cm³).

> moldm⁻³ concentration of ethanol

% ethanol =
$$g/100 \, \text{cm}^3$$
 [6]

[1]

(ii) Suggest one assumption the students have to make when giving their result.

Total Marks for Question Set 4: 24

Resource Materials

Question Set No: 4

Quesi		Sel NO. 4								
	(0)	18 2 He 4:0	10 Ne 20.2 18 Ar 39.9	36 Kr ^{krypten} 83.8	54 Xe ³⁴⁰⁰	86 Rn ^{radon}				
	6	17	9 F 19.0 17 C1 35.5	35 Br ^{bromine} 79.9	53 I 126.9	85 At astatre		71 Lu Iutetium 175.0	103 Lr Iawrencium	
	(9)	16	8 00 16.0 16 32:1 32:1	34 Se 79.0	52 Te telurium 127.6	84 Po pobnium	116 Lv Ivermonum	70 Yb yttertium 173.0	102 No noteium	
	(5)	15	7 N 140,0 15 P phospharus 31.0	33 As arsenic 74.9	51 Sb antimony 121.8	83 Bi ^{bismuth} 209.0		69 Tm thuitum 168.9	101 Md mendelentum	
	(4)	14	6 carbon 12.0 14 Si 28.1	32 Ge 72.6	50 Sn th 118.7	82 Pb ***d 207.2	114 F1 ferovium	68 Er erteum 167.3	100 Fm ^{6mium}	
	(3)	13	5 B boron 10.8 13 A1 atminium 27.0	31 Ga galium 69.7	49 In indum 114.8	81 T1 thelium 204.4		67 Но Мотили 164.9	99 Es einsteintum	
ments			5	30 Zn 65.4	48 Cd admium 112.4	80 Hg 200.6	112 Cn copemicium	66 Dy dreprosium 162.5	98 Cf aifonium	
ie Elei			7	29 000 63.5	47 Ag silver 107.9	79 Au 906 197.0	111 Rg mentjenium	65 Tb testèurn 158.9	97 Bk ^{betelum}	
e of th			28 Ni 58.7	46 Pd patadium 106.4	78 Pt petinum 195.1	110 Ds ^{darmsb} dbun	64 Gd 157.2	96 m m		
c Tabl			თ	27 Co obat 58.9	45 Rh 102.9	77 Ir 192.2	109 Mt ^{meinenum}	63 Eu 152.0	95 Am emericum	
eriodio			ø	26 8 8 8 8 8	44 Ru 101.1	76 Os esmium 190.2	108 Hs ^{hess lum}	62 Sm 150.4	94 Pu putonium	
The P(~	25 Mn 54.9	43 Tc	75 Re ^{menum} 186.2	107 Bh bdnium	61 Pm 144.9	93 Np mptunium	
		er mass	۵	24 Cr 52.0	42 Mo 95.9	74 W tungsten 183.8	106 Sg extragum	60 Nd 144.2	92 U 238.1	
		Key mic numb Symbol atomic i	or	23 Vanadium 50.9	41 Nb ^{nictium} 92.9	73 Ta teetsetum 180.9	105 Db dubrium	59 Pr presectymium 140.9	91 Pa	
		ato	4	22 Ti 47.9	40 Zr zirconium 91.2	72 Hf Isfrium 178.5	104 Rf Nthertodium	58 Ce cerium 140.1	90 Th thorium 232.0	
			21 Sc scendum 45.0	39 ¥tříum 88.9	57–71 Ianthenciós	89—103 actinatios	57 La 138.9	89 Ac adinium		
	(2)	2	4 Be 9.0 12 Mg megnestim 24.3	20 Ca estium 40.1	38 Sr strottum 87.6	56 Ba Isnum 137.3	88 Ra ^{radum}			
	(1)	1 Hydrogen 1.0	3 Li 6.9 11 Na 800km 23.0	19 potessium 39.1	37 Rb ^{nubidium} 85.5	55 Cs essium 132.9	87 Fr francium			

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge