

A Level Chemistry B (Salters) H433/02 Scientific literacy in chemistry

Question Set 3

Deoxyribose, $C_5H_{10}O_4$, has a vital role in our biochemistry as a component of DNA.

Deoxyribose exists in solution as several forms, two of which are shown below.

(a) (i)

Circle all the chiral centres on both structures above. [1]

- (ii) Name the functional group that is present in the linear form only. [1]
- (iii) Describe a laboratory test for the functional group identified in (a)(ii). [2]
- (iv) Circle a primary alcohol group on each structure below, giving a reason for your choice.

(vi) Complete the equation that shows the reaction when the linear form changes to the ringform.

 $-CHO + HO - \longrightarrow$

1

(b)		In DNA, deoxyribose is always present as the ring form. The primary alcohol group in the ring form of deoxyribose and the alcohol group on the adjacent carbon condense with phosphate groups. A sugar-phosphate backbone is formed.	
		Draw a section of the sugar-phosphate backbone.	
		Show one deoxyribose and two phosphate groups.	[2]
(c)	(i)	The structure of a fragment of DNA is sometimes represented by a sequence of letters, e.g. GCA. The letters stand for guanine, cytosine and adenine.	
		What single term describes guanine, adenine and cytosine? How and where do they attach to the sugar-phosphate backbone?	
		Term	
			[2]
	(ii)	Give the DNA sequence that would produce the CUG sequence in RNA.	[1]
	(iii)	The sequence given in (c)(ii) codes for an amino acid in a protein chain.	
		Name the amino acid. Use the <i>Data Sheet</i> to help you.	[1]
	(iv)	Explain how a sequence in DNA codes for an amino acid.	[2]

Compound **B** is a structural isomer of deoxyribose with the molecular formula $C_5H_{10}O_4$.

The infrared, ¹H and ¹³C NMR spectra of compound **B** are shown below.

Work out the structure of compound **B**.

Give evidence from **each** spectrum and show how it relates to the structure you have given.

[6]

Total Marks for Question Set 3: 22

(d)*

Resource Materials

Question Set No: 3 Data Sheet for Chemistry B

General Information

Molar gas volume = $24.0 \text{ dm}^3 \text{ mol}^{-1}$ at RTP Avogadro constant, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ Specific heat capacity of water, $c = 4.18 \text{ Jg}^{-1} \text{ K}^{-1}$ Planck constant, $h = 6.63 \times 10^{-34} \text{ JHz}^{-1}$ Speed of light in a vacuum, $c = 3.00 \times 10^8 \text{ ms}^{-1}$ Ionic product of water, $K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ at 298 K 1 tonne = 10^6 g Arrhenius equation: $k = Ae^{-E_a/RT}$ or $\ln k = -E_a/RT + \ln A$ Gas constant, $R = 8.314 \text{ Jmol}^{-1} \text{ K}^{-1}$

Triplet base codes (codons) for some amino acids used in mRNA

Glycine	GGU
Alanine	GCC
Leucine	CUG
Serine	UCG
Aspartic acid	GAU
Glutamine	CAA
Valine	GUC

Characteristic infrared absorptions in organic molecules

Bond	Location	Wavenumber/cm ⁻¹						
C-H	Alkanes Alkenes, arenes	2850–2950 3000–3100						
CC	Alkanes	750–1100						
C=C	Alkenes	1620–1680						
aromatic C=C	Arenes	Several peaks in range 1450–1650 (variable)						
C=O	Aldehydes Ketones Carboxylic acids Esters Amides Acyl chlorides and acid anhydrides	1720–1740 1705–1725 1700–1725 1735–1750 1630–1700 1750–1820						
C0	Alcohols, ethers, esters and carboxylic acids	1000–1300						
C≕N	Nitriles	2220-2260						
C-X	Fluoroalkanes Chloroalkanes Bromoalkanes	1000–1350 600–800 500–600						
O_H	Alcohols, phenols Carboxylic acids	3200–3600 (broad) 2500–3300 (broad)						
N—H	Primary amines Amides	3300–3500 са. 3500						

Chemical shifts are variable and can vary depending on the solvent, concentration and substituents. As a result, shifts may be outside the ranges indicated above.

Note that CH bonded to 'shifting groups' on either side, e.g. O-CH2-C=O, may be shifted more than indicated above. OH and NH chemical shifts are very variable and are often broad. Signals are not usually seen as split peaks.

22
en
Ē
e
ш
the
÷
0
е
q
a
-
<u> </u>
5
ō
Ξ.
e
α.
The

·

0	18	2 He behund	4.0	10	Ne	^{20.2}	18	Ar	argon 39.9	36	Kr	krypten 83.8	54	Xe	_{жпол} 131.3	86	Rn	radon		
6			17	6	L	fluorine 19.0	17	cı	35.5	35	Ъ	79.9	53	Ι	iodine 126.9	85	At	astatne		
(9)			16	8	0	oxygen 16.0	16	s	32.1	34	ŝ	79.0	52	Те	tellurium 127.6	84	Ъ	polonium	116	Lv ivermonium
(2)			15	2	z	nitrogen 14.0	15	₽.	a1.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Bi	209.0		
(4)			14	9	v	carbon 12.0	14	Si	silican 28.1	32	g	gemenium 72.6	50	Sn	th 118.7	82	Pb	207.2	114	F1 ferrwum
(3)			13	5	ю	10.8	13	A 1	aluminium 27.0	31	Ga	gallum 69.7	49	'n	indium 114.8	81	T1	204.4		
									12	30	Zn	aire 65.4	48	8	cadmium 112.4	80	ВН	200.6	112	Cn
									11	29	0 G	opper 63.5	47	Ag	silver 107.9	79	٩u	197.0	111	Rg menternium
									10	28	ī	58.7	46	Ъd	paladium 106.4	78	۲	195.1	110	DS darmate dourn
									6	27	ပိ	oobalt 58.9	45	Rh	102.9	77	F	niaum 192.2	109	Mt meinenum
									80	26	Fe	ыл 55.8	44	Ru	nuthenium 101.1	76	0s	90.2	108	HS
									7	25	Mn	54.9	43	Tc	technetium.	75	Re	mentum 186.2	107	Bh
		Der	mass						9	24	Ⴆ	chromium 52.0	42	Μo	maybaanum 95.9	74	۸	183.8	106	Sg
	Key	Symbol	ve atomic						5	23	>	venedium 50.9	41	qN	niotium 92.9	73	Та	180.9	105	0Db dubnium
		at	relati						4	23	F	47.9	40	Zr	zircontum 91.2	72	Ħ	178.5	104	Rf
-									в	21	Sc	45.0	39	≻	yttrium 88.9		• 57-71	Ianthanciós	00 000	ectinada.
(2)			2	4	Be	Berylium 9.0	12	Mg	megnesium 24.3	20	ça	40.1	38	s	strontium 87,6	56	Ba	137.3	88	Ra
(1)	۲	H 1 H Hyšrogen	1.0	33	:	Brium 6.9	11	Na	23.0	19	¥	39.1	37	Rb	ubidum 85.5	55	ഗ്	132.9	87	Fr

71 Lu Iudebium 175.0	103 Lr Iawrencium
70 Yb yttertium 173.0	102 No ^{nobsium}
69 Tm 168.9	101 Md mendelevium
68 Er etteum 167.3	100 Fm ^{6mium}
67 Ho ^{hołmium} 164.9	99 Es einteinium
66 Dy dysprosium 162.5	98 Cf catfornium
65 Tb terteium 158.9	97 BK befeetum
64 Gd addinum 157.2	96 Cm ourum
63 Eu europum 152.0	95 Am amandum
62 Sm samañum 150.4	94 Pu bubuum
61 Pm prometrium 144.9	93 Np Mp
60 Nd neodmium 144.2	92 U uranium 238.1
59 Pr 140.9	91 Pa
58 Ce cetur 140.1	90 Th thorum 232.0
57 La lanthonum 138.9	89 Ac admum

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge