

A Level Chemistry B (Salters) H433/02 Scientific literacy in chemistry

Question Set 2

paracetamol

(a) Name two functional groups in paracetamol, apart from the benzene ring.

(b) Some students set out to make paracetamol by the method shown below.

(i) The students want to make 5.0g of 4-nitrophenol in **step 1**.

Calculate the mass of phenol they should start with.

Give your answer to an **appropriate** number of significant figures.

mass of phenol = g [2]

[2]

(ii) The two nitrophenols formed can be separated since they have different boiling points. 2nitrophenol has a lower boiling point than 4-nitrophenol. This is because internal hydrogen bonding can occur in 2-nitrophenol.

Draw the structure of 2-nitrophenol with the -OH and $-NO_2$ groups shown as **full** structural formulae; show where the internal hydrogen bond would form.

[2]

(iii) Name the **type** of reaction that occurs in **step 2** and name the functional group that has been formed.

Type of reaction

Functional group formed[1]

[2]

[3]

[1]

- (iv) Write an equation for the reaction in step 3.Use skeletal formulae for the organic compounds.
- (v) The students purify the product from **step 3** by recrystallisation from water.

Describe the steps in the recrystallisation of a solid product from water. Indicate how insoluble and soluble impurities are removed. [4]

(c) Paracetamol is thought to be converted to AM404 in the body. AM404 is thought to inhibit the enzyme-catalysed breakdown of anandamide. Anandamidereduces pain responses.

- (i) Suggest how AM404 inhibits the breakdown of anandamide.
- (ii) Describe the stereochemistry of the double bonds in AM404. [1]
- (iii) Explain how the double bonds in AM404 hold the carbon chain in shape.

Total Marks for Question Set 2: 18

Resource Materials

Question Set No: 2

The Periodic Table of the Elements

(0) 18 4.0 4.0	10 Ne 20.2 18 Ar 39.9	36 Kr krypten 83.8 54 54 54 54 83.8	Rn Rn]	
17 (7)	9 F 19.0 17 C1 35.5 35.5	35 Br Promine 79.9 53 53 19.0 10 file	At assisting	71 Lu tostum 175.0	103 Lr Iawencium
(6) 16	8 00 16.0 16 32.1 32.1	34 Se 79.0 52 52 te belurium	Po Po pobrium 116 Lv Ivermonum	70 Yb ytsatium 173.0	102 No ^{nobeium}
(5) 15	7 N 14:0 15 P phospharus 31:0	33 As arseric 74.9 51 Sb antimory 1212	Bi bisenuth 209.0	69 Tm thitm 168.9	101 Md mendelevium
(4)	6 C carbon 12:0 14 Si 28:1	32 Ge gementum 72.6 50 Sn sn	82 82 88d 88d 207.2 114 F1 F1	68 Er atkim 167.3	100 Fm
(3)	5 B boron 10.8 13 A1 starristan 27.0	31 Ga 941km 69.7 49 In In	81 17 tablum 204.4	67 Ho homium 164.9	99 Es einsteinium
	12	30 Zn 2m 65.4 48 Cd cd cd cd cd cd cd	12 80 Нg легозиу 200.6 112 Cn Cn Cn	66 Dy 162.5	98 Cf aifoniun
	5	29 Cu 63.5 63.5 Ag sther sther	79 79 808 197.0 111 Rg noentpenium	65 Tb Meteium 158.9	97 Bk ^{berketum}
9		28 NI 58.7 58.7 46 Pd patetium	78 Pt patinum 195.1 110 Ds dammaddum	64 Gd 157.2	96 Cm outlin
თ		27 Co cobat 58.9 45 Rh Rb fo fo fo fo fo fo fo fo fo fo fo fo fo	102.2 Ir irdaun 192.2 109 Mt metherium	63 Eu 152.0	95 Am americum
	00	26 Fe 55.8 44 Ru nothenium	76 05 05 190.2 108 Hs heesim	62 Sm sammium 150.4	94 Pu putenium
	~	25 Mn manganese 54.9 43 tc tochnetum	75 Re ^{menum} 186.2 107 Bh bohium	61 Pm 144.9	93 Np neptunium
Key atomic number Symbol relative atomic mass	9	24 Cr 52.0 52.0 42 Mo Mo OK	74 74 183.8 183.8 106 Sg	60 Nd 144.2	92 U 238.1
	ى م	23 50.9 Nb Nb Nb Nb Nb Nb Nb Nb Nb Nb Nb	73 73 180.9 180.9 105 Db	59 Pr 140.9	91 Pa
	4	22 Ti 47.9 40 Zr 2roontum 2roontum 04	72 Hf Isfrium 178.5 104 Rf Rf	58 Ce entur 140.1	90 Th th orium 232.0
	9	21 85 45.0 39 39 2810 29	57–71 Iantisanciós 89–103 actinciós	57 La hanthanum 138.9	89 Ac
2 (2)	4 Be bantium 9.0 12 Mg magnesium 24.3	20 Ca aotsium 40.1 38 Sr Sr Sr Sr	56 56 Ba bartum 137.3 88 88 Ra Ra Ra		
(1) 1 1 1.0	3 Li 6.9 11 Na 8odium 233.0	19 K Potossium 39:1 37 Rb Rb Rb Rb Rb	55 55 CS CS 132.9 87 Fr francium		

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge