

A Level Chemistry B (Salters) H433/02 Scientific literacy in chemistry

Question Set 1

- Sodium ethanoate is used as an 'acidity regulator' in foods.
- (a) (i) Sodium ethanoate, CH_3COONa , can be made by reacting solutions of ethanoic acid, CH_3COOH , and sodium carbonate, Na_2CO_3 , in the laboratory.

Write an equation for this reaction.

(ii) Calculate the volume (in cm³) of $0.500 \text{ mol dm}^{-3} \text{ Na}_2\text{CO}_3$ that would react with 25.0 cm^3 of $0.450 \text{ mol dm}^{-3} \text{ CH}_3\text{COOH}$.

			volume of $Na_2CO_3 =$	cm ³	[2]
(b)		The ethanoate ion forms an alkaline sole Write an equation to show this.	ution in water.		[1]
(c)	(i)	Ethanoic acid is a weak acid. $K_a = 1.7$ write an equation for the reaction of ethat	< 10 ⁻⁵ mol dm ⁻³ . anoic acid in water.		[1]

(ii) Calculate the pH of a $0.030 \text{ mol dm}^{-3}$ solution of ethanoic acid.

pH =[2]

[2]

[3]

(d) When sodium ethanoate is acting as an acidity regulator in food, a buffer solution is set up. This buffer involves sodium ethanoate and ethanoic acid.

Explain, with the help of an appropriate equation, how this buffer solution works when acid is added.

(e) (i) Some students investigate buffers involving sodium ethanoate and ethanoic acid.

They make a solution containing equal amounts of ethanoic acid and sodium ethanoate.

Calculate the pH of this solution.

 $K_{\rm a}$ = 1.7 × 10⁻⁵ mol dm⁻³ for ethanoic acid.

pH = [1]

1

(ii) The students then set out to make a buffer solution of a known pH. They have 25.0 cm³ of a 0.100 mol dm⁻³ solution of ethanoic acid.

Calculate the mass of sodium ethanoate they need to add to the acid solution to make a solution of pH = 5.00.

mass of sodium ethanoate = g [4]

Total Marks for Question Set 1: 16

Resource Materials

Question Set No: 1

(0) 18 18 4.0	10 Ne 20.2 18 Ar 39.9	36 Kr krypen 83.8 54 54 Xe xenon	Rn radon	
17 (7)	9 F 19.0 17 C1 C1 35.5	35 Br bromine 79.9 53 1 I I 126.9	At assatra	71 Lu Iudebum 175.0 103 Lr Iawwenstum
(6) 16	8 00 16.0 16 32.1 32.1	34 Se satentum 79.0 52 Te betutum 127.6	Po Po pobrium 116 LV ivermonum	70 Yb ytbettum 173.0 102 No notestum
(5) 15	7 N 14.0 15 P phospharus 31.0	33 As arseric 74.9 51 Sb aritimory 121.8	Bi bismuth 209.0	69 Tm tavium 168.9 101 Md mendsevium
(4) 14	6 carbon 12:0 14 Si 28:1	32 Ge сетанит 72.6 50 Sn th th th th th th th th th th th th th	82 Pb ead 207.2 114 F1 ferovium	68 Er etèum 167.3 100 Fm ferrium
(3)	5 B boron 10.8 13 A1 akuminium 27.0	31 Ga patum 69.7 49 In In 14.8	81 11 thattum 204.4	67 Ho homium 164.9 99 Es eireonium
	12	30 Zn 85.4 65.4 48 cd sadnium	Hg Hg mercury 200.6 112 Cn copernicium	66 Dy 162.5 98 Cf antomum
	1	29 Cu 63.5 Ag stiver 107 9	79 79 808 197.0 111 Rg roentpenium	65 Tb betaun 158.9 97 BK betatum
	10	28 Ni 58.7 58.7 46 Pd patadum	78 Pt petitum 195.1 110 Ds damateddum	64 Gd 157.2 96 Cm ortum
	6	27 Co 58.9 45 Rh frodum frodum	Ir Ir 192.2 109 Mt methenum	63 Eu 152.0 95 Am areadum
	8	26 Fe 55.8 44 Ru 101 1	76 Os osmium 190.2 108 Hs hessium	62 Sm amatum 150.4 94 Pu phrenum
	•	25 Mn manganase 54.9 43 Tc tocinatur	75 Re ^{mentum} 186.2 107 Bh bohitum	61 Pm pometium 144.9 93 83 Np meturium
ber mass	9	24 Cr 52.0 52.0 42 Mo 05.0	74 V 183.8 183.8 106 Sg	60 Nd 144.2 92 U 238.1
Key omic num Symbol ^{name} ve atomic	م	23 50.9 82 A1 82 A1 82 A1 82 A1	73 Ta tentstum 180.9 105 Db	59 Pr 140.9 91 Patadhium
at	4	22 Ti 47.9 40 Zr 21 21 21 21 21 21 21 21 21 21 21 21 21	72 Hf hafrium 178.5 104 Rf ndbertedum	58 Ce ceium 140.1 140.1 11 10 232.0
	r,	21 SC 45.0 39 yttrium 88 9	57-71 Isethancios 89-103 actinicios	57 La harthanum 138.9 89 89 AC
2 (2)	4 Be banyfium 9.0 12 Mg megresum 24.3	20 Ca entrum 40.1 38 Sr strontum 87.6	56 Ba bañum 137.3 88 Ra Ra Ra	
(1) 1 1 H H 1.0	3 11 8.9 8.9 8.9 8.9 8.9 8.0 23.0	19 K 39.1 37 Rb Rb Rb R5.5	55 Cs cassium 132.9 87 Fr francium	

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge