A Level Chemistry A
 H432/03 Unified chemistry

Question Set 2

A student plans to determine the enthalpy change of reaction 3.1 shown below.
$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ reaction 3.1
This enthalpy change can be determined indirectly using Hess' Law from the enthalpy changes of reaction 3.2 and reaction 3.3 shown below.
$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})$
reaction 3.2
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta_{\mathrm{r}} \mathrm{H}=-57.6 \mathrm{~kJ}$ mol-1 reaction 3.3
The student will determine the enthalpy change of reaction 3.2 as outlined below.

- Weigh a bottle containing $\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$ and weigh a polystyrene cup.
- Add about $25 \mathrm{~cm}^{3}$ of water to the polystyrene cup and measure its temperature.
- Add the $\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$, stir the mixture, and measure the maximum temperature reached.
- Weigh the empty bottle and weigh the polystyrene cup with the final solution.

Mass readings

Mass of bottle $+\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$	$=16.58 \mathrm{~g}$
Mass of empty bottle	$=15.34 \mathrm{~g}$
Mass of empty polystyrene cup	$=21.58 \mathrm{~g}$
Mass of polystyrene cup + final solution	$=47.33 \mathrm{~g}$

Temperature readings

Initial temperature of water $=20.5^{\circ} \mathrm{C}$
Maximum temperature of final solution $\quad=55.5^{\circ} \mathrm{C}$
The density and specific heat capacity, c, of the solution are the same as for water.
(a)* Calculate the enthalpy change of reaction 3.2 and the enthalpy change of reaction 3.1.

Show all your working.
(b) The uncertainty in each temperature reading is $\pm 0.1^{\circ} \mathrm{C}$.

The uncertainty in each mass reading is $\pm 0.005 \mathrm{~g}$.
Determine whether the mass of $\mathrm{Na}_{2} \mathrm{O}$ or the temperature change has the greater percentage uncertainty.

Show all your working.
(c) Suggest a modification to this experiment, using the same apparatus, which would reduce the percentage errors in the measurements.

Explain your reasoning.
(d) Sodium oxide, $\mathrm{Na}_{2} \mathrm{O}$, can be prepared by the redox reaction of NaNO_{2} and sodium metal.
Nitrogen gas is also formed.
(i) What is the systematic name for NaNO_{2} ?
(ii) Using oxidation numbers, with signs, show the element that is oxidised and the element that is reduced in this reaction.

Element oxidised \qquad
Oxidation number change from \qquad to \qquad

Element reduced \qquad
Oxidation number change from \qquad to \qquad
(iii) Construct the equation for this reaction.

Copyright Information
OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge

